"direct" properties are the latest preferred way to implement GObject
base properties. That way, the property meta data tracks the
"direct_type" and the offset where to find the data in the struct.
That way, we can automatically
- initialize the default values
- free during finalize
- implement get_property()/set_property()
Also, the other settings operations (compare, to/from D-Bus) are
implemented more efficiently and don't need to go through
g_object_get_property()/GValue API.
Certain properties need to release memory when destroying the NMSetting.
For "direct" properties, we have all the information we need to do that
generically in the NMSetting base class. In practice, this only concerns
string properties.
See _finalize_direct() in "nm-setting.c".
However, if the NMSetting base class takes care of freeing the strings,
then the subclasses must not also unref the variable (to avoid double free).
Previously, subclasses had to opt-in for the base class to indicate that
they are fine with that.
Now, let the base class always handle it. We only need to make sure that
classes that implement direct string properties don't also try to free
the values during destruction.
"flags" are a g_param_spec_flags() and correspond to G_TYPE_FLAGS type.
They are internally stored as guint, and exported on D-Bus as "u" (32 bit
integer).
Give a consistent name.
A bit odd are now the names nm_g_bytes_hash() and nm_g_bytes_equal()
as they go together with nm_pg_bytes_hash()/nm_pg_bytes_equal().
But here the problem is more with the naming of "nm_p*_{equal,hash}()"
functions, which probably should be renamed to "nm_*_ptr_{equal,hash}()".
Our handling of properties is relatively complicated. We should have
clear code paths and responsibilities who calls who.
There is from_dbus_fcn() callback to implement parsing a GVariant and
set the property in NMSetting. This is called via:
- _nm_setting_new_from_dbus()
- init_from_dbus()
- _property_set_from_dbus()
Then, one of the from_dbus_fcn() implementations is
_nm_setting_property_from_dbus_fcn_gprop(), which calls
set_property_from_dbus(). That one sets the property using GObject
setter. That's good and a clear code path.
However, set_property_from_dbus() was also called via
- _nm_setting_update_secrets()
- klass->update_one_secret()
- nm-setting.c:update_one_secret()
- set_property_from_dbus()
Meaning, there is a different code path to set_property_from_dbus(),
which bypasses from_dbus_fcn(). That is highly undesirable, because
it should be clear how a property setter gets implemented, and this
way, potentially two different implementations were used.
Refactor nm-setting.c:update_one_secret() to use
_property_set_from_dbus() instead. This behaves potentially differently
for properties like NM_SETTING_ADSL_PASSWORD, which is implemented as
a "direct" property, where from_dbus_fcn() setter no longer uses g_object_set().
This should not make a difference in practice, and in any case, now the
code paths are unified.
Note that most implementations use g_object_set(), and it's not
easy to detect modification. In those cases, we assume that modification
happened -- just like also the GObject setter will emit a notification
(as none of our properties use G_PARAM_EXPLICIT_NOTIFY).
These functions tend to have many arguments. They are also quite som
boilerplate to implement the hundereds of properties we have, while
we want that properties have common behaviors and similarities.
Instead of repeatedly spelling out the function arguments, use a macro.
Advantages:
- the usage of a _NM_SETT_INFO_PROP_*_FCN_ARGS macro signals that this
is an implementation of a property. You can now grep for these macros
to find all implementation. That was previously rather imprecise, you
could only `git grep '\.to_dbus_fcn'` to find the uses, but not the
implementations.
As the goal is to keep properties "similar", there is a desire to
reduce the number of similar implementations and to find them.
- changing the arguments now no longer will require you to go through
all implementations. At least not, if you merely add an argument that
has a reasonable default behavior and does not require explicit
handling by most implementation.
- it's convenient to be able to patch the argument list to let the
compiler help to reason about something. For example, the
"connection_dict" argument to from_dbus_fcn() is usually unused.
If you'd like to find who uses it, rename the parameter, and
review the (few) compiler errors.
- it does save 573 LOC of boilerplate with no actual logic or useful
information. I argue, that this simplifies the code and review, by
increasing the relative amount of actually meaningful code.
Disadvantages:
- the user no longer directly sees the argument list. They would need
cscope/ctags or an IDE to jump to the macro definition and conveniently
see all arguments.
Also use _nm_nil, so that clang-format interprets this as a function
parameter list. Otherwise, it formats the function differently.
There is a quest to move away from the GObject/GValue based setters.
Add _nm_setting_property_from_dbus_fcn_direct(), which can parse
the GVariant and use the direct_type to set the property.
Note that for backward compatibility, we still need
_nm_property_variant_to_gvalue() to convert alternative GVariant
types to the destination value. This means, as before, on the D-Bus
API a property of a certain type can be represented as various D-Bus
types.
This is a normalization employed by NMSettingIPConfig.gateway.
Also rework NMSettingIPConfig.set_property() to no longer assert against
valid input. We want to pass there untrusted strings from D-Bus,
asserting is a horrible idea. Instead, either normalize the string or
keep the invalid text that will be rejected by verify().
A MAC address is a relatively common "type". The GObject property is of type string,
but the D-Bus type is a bytestring ("ay"). We will need a special NMSettInfoPropertType.
Note that like most implementations, the from-dbus implementation still is based
on GObject setters. This will change in the future.
Also note that the previous compare function was
_nm_setting_property_compare_fcn_default(). That is, it used to convert
the property to GVariant and compare those. The conversion to GVariant
in that case normalizes the string (e.g. it is case insensitive). Also,
only properties could be compared which were also convertible to D-Bus
(which is probably fine, because there is no guarantee the profiles that
don't verify can be compared).
The code now uses the direct comparison of the strings. That mostly
preserves the case-insensitivity of the previous comparison, because
the property setters for mac addresses all use
_nm_utils_hwaddr_canonical_or_invalid() to normalize the strings.
This is subtle, but still correct. Note that this will improve later,
by ensuring that the property setters for mac addresses automatically
perform the right normalization.
When looking at a property, it should always be clear how it is handled.
Also the "default" action should be an explicit hook.
Add _nm_setting_property_from_dbus_fcn_gprop() and set that as
from_dbus_fcn() callback to handle the "default" case which us
build around g_object_set_property().
While this adds lines of code, I think it makes the code easier to
understand. Basically, to convert a GVariant to a property, now all
properties call their from_dbus_fcn() handler, there is no special casing.
And the gprop-hook is only called for properties that are using
_nm_setting_property_from_dbus_fcn_gprop(). So, you can reason about
these two functions at separate layers.
NM_SETTING_NAME is also a GObject property, but it's
not supposed to be serialized to/from D-Bus. It also
is irrelevant for comparison.
Hence, it's operations are all NOPs. Make an explicit property type for
that case instead of checking the GParamSpec flags.
The "to_dbus_data" existed for namespacing the properties inside it.
However, such a struct adds overhead due to the alignment that it
enforces. We can share the memory needed for the bitfield by having
them beside each other.
All settings have a "name" property. Their compare_fcn() is not interesting
and was already previously ignored. But we should not special handle it via
_nm_setting_property_compare_fcn_default().
So far, we only have NMSettingClass.compare_property() hook.
The ugliness is that this hook is per-setting, when basically
all implementations only compare one property.
It feels cleaner to have a per-property hook and call that consistently.
In step one, we give all properties (the same) compare_fcn() implementation,
which delegates to the existing NMSettingClass.compare_property().
In a second step, this will be untangled.
There is one problem with this approach: NMSettInfoPropertType grows by
one pointer size, and we have potentially many such types. That should
be addressed by unifying types in the future.
Various NMSetting API would accept a property_idx parameter. Together
with the NMSettInfoSetting instance, this was useful to find the actual
NMSettInfoProperty instance.
The idea was, to provide the most of the functionality. That is, if you
might need the property_idx too, you had it -- after all, the
property_info you could lookup yourself.
However,
- literally zero users care about the property_idx. The care about
the property_info.
- if the user really, really required the property_idx, then it
is a given that it can be easily computed by
(property_info - sett_info->property_infos)
We encode the default value "direct" properties in the GParamSpec.
But we also avoid CONSTRUCT properties, because they have an overhead
and they are generally odd for the settings.
So up to now, it was cumbersome to explicitly set the default value,
but it was also error prone.
Avoid that by always initializing the default value for our "direct"
properties.
And as example, implement NMSettingVrf.table this way. This also
makes all properties of NMSettingVrf implemened as "direct" properties,
and we can drop the explicit getter/setters.
If all settings would be strictly be implemented as "direct" properties,
we could call this from NMSetting.finalize() and be done with it.
As it is, for now we cannot, so it's still cumbersome.
Introduce a new mechanism for how to handle properties generically.
We have NMSettInfoSetting, NMSettInfoProperty and NMSettInfoPropertType
with meta data about settings and their properties.
For example, we have a simple boolean property. Then (usually) we have a
boolean GParamSpec, and a plain boolean field in the NMSetting's private
data. We need very little to get (and convert to keyfile, GVariant),
set (from keyfile, GVariant) and compare this property.
All we need to know, is the GParamSpec and the offset of the bool field.
Introduce a new mechanism for that, and as example implement
NM_SETTING_CONNECTION_AUTOCONNECT property this way.
Note that this patch only changes the to_dbus_fcn() for the boolean
property. But this opens up all kind of further improvements.
What we eventually also can do is replace GObjectClass.get_property()
with a generic variant, that knows how to get and set the property.
NMSetting instances either have no private data, they use
g_type_add_class_private(), or they embed the private data in the
NMSetting struct.
In all cases, we can find the private data at a fixed offset. Track that
offset in the NMSettInfoSetting meta data.
This will be useful, because properties really are stored in simple
fields, like a boolean property can be stored in a "bool" field. We will
extend the property meta data to track the offset of this property
field, but we also need to know where the offset starts.
Usually, properties that are set to their default are not serialized on
D-Bus. That is, to_dbus_fcn() returns NULL.
In some cases, we explicitly want to always serialize the property. For
example, if we changed behavior and the libnm default value changed.
Then we want that the message on D-Bus is always clear about the used
value and not rely on the default value on the receiving side.
Most of our NMSetting properties are based around GObject properties,
and thus the tooling to convert a NMSetting to/from GVariant consists
of getting/setting a GValue.
We can do better.
For most of such properties we also define a C getter function, which
we can call with less overhead. All we need is to hook the C getter with
the property meta data.
As example, implement it for "connection.autoconnect".
The immediate goal of this is to reduce the overhead of to_dbus. But
note that also for comparison of two properties, there is the default
implementation which is used by the majority of properties. This
implementation converts the properties first to GVariant (via
to_dbus_fcn) and then compares the variants. What this commit also does,
is to hook up the property meta data with the C-getters. This is one step
towards also more efficiently compare properties using the naive C
getters. Likewise, the keyfile writer use g_object_get_property().
It also could do better.