Merge the function pointer get_func() into to_dbus_fcn().
Previously, get_func() as handled separately from to_dbus_fnc()
(formerly synth_func()). The notion was that synth-func would syntetize
properties that are D-Bus only. But that distinction does not seem
very helpful to me.
Instaed, we want to convert a property to D-Bus. Period. The
implementation should be handled uniformly. Hence, now that is
all done by property_to_dbus().
Note that property_to_dbus() is also called as default implementation
for compare-property. At least, for properties that are backed by a
GObject property.
The naming was not very clear. How does get_func(), synth_func()
and to_dbus() relate? What does synth_func() do anyway?
Answers:
- get_func() and synth_func() do very similar. They should be merged
in a next step.
synth_func() has the notion of "synthetize" a property for
D-Bus. As such, these properties are a bit unusual in that they
don't have a backing GObject property in the setting. But it'd
rather treat such properties like other properties. The step
in that direction will be to merge the to-dbus functions.
- to_dbus() converts a GValue of the GObject property go GVariant.
It's a simplified form of get_func()/synth_func() and a better name
is gprop_to_dbus_fcn().
The same for gprop_from_dbus_fcn().
For now, just rename.
We have certain artificial properties that not only depend on one
property alone or that depend on a property in another(!) setting.
For that, we have synth_func.
Other than that, synth_func and get_func are really fundamentally
similar and should be merged. That is because the distinction whether a
property value is "synthetized" or just based on a plain property is
minor. It's better to have the general concept of "convert property to
GVariant" in one form only.
Note that compare_property() is by default implemented based
on get_func. Hence, if get_func and synth_func get merged,
compare_property() will also require access to the NMConnection.
Also it makes some sense: some properties are artificial and actually
stored in "another" setting of the connection. But still, the property
descriptor for the property is in this setting. The example is the
"bond.interface-name" which only exists on D-Bus. It's stored as
"connection.interface-name".
I don't really like to say "exists on D-Bus only". It's still a valid
property, despite in NMSetting it's stored somehow differently (or not
at all). So, this is also just a regular property for which we have a
property-info vtable.
Does it make sense to compare such properties? Maybe. But the point is that
compare_property() function needs sometimes access to the entire
connection. So add the argument.
Always properly set NMSettInfoProperty.dbus_type, instead of leaving it
unspecified for GObject property based properties, and detect it each
time anew with variant_type_for_gtype().
Instead, autodetect and remember the dbus-type during _properties_override_add_struct().
For types that need special handling (GBytes, enums and flags) set a to_dbus() function.
This allows us to handle properties uniformly by either calling the to_dbus() function
or g_dbus_gvalue_to_gvariant().
- the previous implementation of nm_setting_wired_get_s390_option()
returned the elements in an arbitrary order (because it just iterated
idx times over the unsorted hash table).
- the API for "s390-options" suggests both accessing by index and by
name. Storing the options in a hash-table is not optimal for lookup
by index. It also requires us to sort the elements over and over
again.
Use instead a sorted array. Note that add/remove of course requires to
move the elements (and has thus O(n)).
- "s390-options" are very seldomly set. We shouldn't pay the price in every
NMSettingWired to allocate a GHashTable and deal with it.
- don't assert in nm_setting_wired_add_s390_option() and
nm_setting_wired_remove_s390_option() that the key is valid.
ifcfg-rh reader understandably does not want to implement additional
logic to pre-validate the key, so any invalid keys would trigger an
assertion failure. We have verify() for this purpose.
"libnm-core" implements common functionality for "NetworkManager" and
"libnm".
Note that clients like "nmcli" cannot access the internal API provided
by "libnm-core". So, if nmcli wants to do something that is also done by
"libnm-core", , "libnm", or "NetworkManager", the code would have to be
duplicated.
Instead, such code can be in "libnm-libnm-core-{intern|aux}.la".
Note that:
0) "libnm-libnm-core-intern.la" is used by libnm-core itsself.
On the other hand, "libnm-libnm-core-aux.la" is not used by
libnm-core, but provides utilities on top of it.
1) they both extend "libnm-core" with utlities that are not public
API of libnm itself. Maybe part of the code should one day become
public API of libnm. On the other hand, this is code for which
we may not want to commit to a stable interface or which we
don't want to provide as part of the API.
2) "libnm-libnm-core-intern.la" is statically linked by "libnm-core"
and thus directly available to "libnm" and "NetworkManager".
On the other hand, "libnm-libnm-core-aux.la" may be used by "libnm"
and "NetworkManager".
Both libraries may be statically linked by libnm clients (like
nmcli).
3) it must only use glib, libnm-glib-aux.la, and the public API
of libnm-core.
This is important: it must not use "libnm-core/nm-core-internal.h"
nor "libnm-core/nm-utils-private.h" so the static library is usable
by nmcli which couldn't access these.
Note that "shared/nm-meta-setting.c" is an entirely different case,
because it behaves differently depending on whether linking against
"libnm-core" or the client programs. As such, this file must be compiled
twice.
(cherry picked from commit af07ed01c0)
Add NMIPRoutingRule API with a few basic rule properties. More
properties will be added later as we want to support them.
Also, add to/from functions for string/GVariant representations.
These will be needed to persist/load/exchange rules.
The to-string format follows the `ip rule add` syntax, with the aim
to be partially compatible. Full compatibility is not possible though,
for various reasons (see code comment).
A NetworkManager client requires an API to validate and decode
a base64 secret -- like it is used by WireGuard. If we don't have
this as part of the API, it's inconvenient. Expose it.
Rename it from _nm_utils_wireguard_decode_key(), to give it a more
general name.
Also, rename _nm_utils_wireguard_normalize_key() to
nm_utils_base64secret_normalize(). But this one we keep as internal
API. The user will care more about validating and decoding the base64
key. To convert the key back to base64, we don't need a public API in
libnm.
This is another ABI change since 1.16-rc1.
(cherry picked from commit e46ba01867)
libnm exposes simplified variants of hexstr2bin in its public API. I
think that was a mistake, because libnm should provide NetworkManager
specific utils. It should not provide such string functions.
However, nmcli used to need this, so it was added to libnm.
The better approach is to add it to our internally shared static
library, so that all interested components can make use of it.
For now only add the core settings, no peers' data.
To support peers and the allowed-ips of the peers is more complicated
and will be done later. It's more complicated because these are nested
lists (allowed-ips) inside a list (peers). That is quite unusual and to
conveniently support that in D-Bus API, in keyfile format, in libnm,
and nmcli, is a effort.
Also, it's further complicated by the fact that each peer has a secret (the
preshared-key). Thus we probably need secret flags for each peer, which
is a novelty as well (until now we require a fixed set of secrets per
profile that is well known).
NMSockAddrEndpoint is an immutable structure that contains the endpoint
string of a service. It also includes the (naive) parsing of the host and
port/service parts.
This will be used for the endpoint of WireGuard's peers. But since endpoints
are not something specific to WireGuard, give it a general name (and
purpose) independent from WireGuard.
Essentially, this structure takes a string in a manner that libnm
understands, and uses it for node and service arguments for
getaddrinfo().
NMSockAddrEndpoint allows to have endpoints that are not parsable into
a host and port part. That is useful because our settings need to be
able to hold invalid values. That is for forward compatibility (server
sends a new endpoint format) and for better error handling (have
invalid settings that can be constructed without loss, but fail later
during the NMSetting:verify() step).
We already need to special handle regular settings (with secrets as
GObject properties) and VPN secrets.
Next, we will also need to special handle WireGuard peers, which can
have secrets too.
Move the code to a virtual function, so that "nm-connection.c" and
"nm-setting.c" does not have explicit per-setting knowledge.
_nm_connection_for_each_secret() (formerly for_each_secret()) and
_nm_connection_find_secret() (formerly find_secret()) operate on a
GVariant of secrets. For that, they implement certain assumptions
of how to handle secrets. For example, it must special-case VPN settings,
because there is no generic abstraction to handle regular secret and VPN
secrets the same.
Such special casing should only be done in libnm-core, at one place.
Move the code to libnm-core as internal API.
While nm_setting_enumerate_values() should not be used anymore, still
extend it to make it workable also for properties that are not based on
GObject properties.
We named the types inconsistently:
- "p2p-wireless" ("libnm-core/nm-setting-p2p-wireless.h")
- "p2p" ("libnm/nm-p2p-peer.h")
- "p2p-wifi" ("src/devices/wifi/nm-device-p2p-wifi.h")
It seems to me, "libnm/nm-p2p-peer.h" should be qualified with a "Wi-Fi"
specific name. It's not just peer-to-peer, it's Wi-Fi P2P.
Yes, there is an inconsistency now, because there is already
"libnm/nm-access-point.h".
It seems to me (from looking at the internet), that the name "Wi-Fi P2P"
is more common than "P2P Wi-Fi" -- although both are used. There is also
the name "Wi-Fi Direct". But it's not clear which name should be
preferred here, so stick to "Wi-Fi P2P".
In this first commit only rename the files. The following commit will
rename the content.
We have bridge min/max/default values in core-internal. Do the same
for bridge port ones.
We will soon use those values to enforce limits when assuming a
bridge port configuration.
Secret-flags are flags, but most combinations don't actually make sense
and maybe should be rejected. Anyway, that is not done, and most places
just check that there are no unknown flags set.
Add _nm_setting_secret_flags_valid() to perform the check at one place
instead of having the implementation at various places.
The property infos are already sorted by name. As nm_setting_enumerate_values()
now uses that information, in most cases there is nothing to sort.
The only instance is NMSettingConnection, which has a different
sort-order. At least for some purposes, not all:
- nm_setting_enumerate_values(), obviously.
- nm_setting_enumerate_values() is called by keyfile writer. That
means, keyfile writer will persist properties in a sorted way.
Cache the property list with alternative sorting also in the
setting-meta data, instead of calculating it each time.
Beside caching the information, this has the additional benefit that
this kind of sorting is now directly available, without calling
nm_setting_enumerate_values(). Meaning, we can implement keyfile writer
without using nm_setting_enumerate_values().
We should no longer use nm_connection_for_each_setting_value() and
nm_setting_for_each_value(). It's fundamentally broken as it does
not work with properties that are not backed by a GObject property
and it cannot be fixed because it is public API.
Add an internal function _nm_connection_aggregate() to replace it.
Compare the implementation of the aggregation functionality inside
libnm with the previous two checks for secret-flags that it replaces:
- previous approach broke abstraction and require detailed knowledge of
secret flags. Meaning, they must special case NMSettingVpn and
GObject-property based secrets.
If we implement a new way for implementing secrets (like we will need
for WireGuard), then this the new way should only affect libnm-core,
not require changes elsewhere.
- it's very inefficient to itereate over all settings. It involves
cloning and sorting the list of settings, and retrieve and clone all
GObject properties. Only to look at secret properties alone.
_nm_connection_aggregate() is supposed to be more flexible then just
the two new aggregate types that perform a "find-any" search. The
@arg argument and boolean return value can suffice to implement
different aggregation types in the future.
Also fixes the check of NMAgentManager for secret flags for VPNs
(NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs
is a property that either has a secret or a secret-flag. The previous
implementation would only look at present secrets and
check their flags. It wouldn't check secret-flags that are
NM_SETTING_SECRET_FLAG_NONE, but have no secret.
We will need access to the serialization flags from within the synth_func().
That will be for WireGuard's peers. Peers are a list of complex, structured
elements, and some fields (the peer's preshared-key) are secret and
others are not. So when serializing the peers, we need to know whether
to include secrets or not.
Instead of letting _nm_setting_to_dbus() check the flags, pass them
down.
While at it, don't pass the property_name argument. Instead, pass the
entire meta-data information we have. Most synth functions don't care
about the property or the name either way. But we should not pre-filter
information that we have at hand. Just pass it to the synth function.
If the synth function would be public API, that would be a reason to be
careful about what we pass. But it isn't and it only has one caller.
So passing it along is fine. Also, do it now when adding the flags
argument, as we touch all synth implementations anyway.
We shall not shortcut the synth function. If the synth function is
unhappy about a missing NMConnection argument, then that needs to be
fixed.
So, revert 395c385b9 and fix the issue in nm_setting_wireless_get_security()
differently. I presume that is the only place that caused problems,
since the history of the patch does not clealy show what the problem
was.
This reverts commit 395c385b9b.
In quite some cases we need the string representation on the heap.
While nm_utils_inet*_ntop() accepts NULL as output buffer to fallback
to a static buffer, such usage of a static buffer is discouraged.
So, we actually should always allocate a temporaray buffer on the
stack. But that is cumbersome to write.
Add simple wrappers that makes calling this more convenient.
Report an error when the user tries to add an unknown attribute
instead of silently accepting (and ignoring) it.
Note that this commit also changes the behavior of public API
nm_utils_sriov_vf_from_str() to return an error when an unknown
attribute is found. I think the previous behavior was buggy as wrong
attributes were simply ignored without any way for the user to know.
Fixes: a9b4532fa7
The entire point of using version 3/5 UUIDs is to generate
stable UUIDs based on a string. It's usually important that
we don't change the UUID generation algorithm later on.
Since we didn't have a version 5 implementation, we would always
resort to the MD5 based version 3. Version 5 is recommended by RFC 4122:
o Choose either MD5 [4] or SHA-1 [8] as the hash algorithm; If
backward compatibility is not an issue, SHA-1 is preferred.
Add a version 5 implementation so we can use it in the future.
All test values are generated with python's uuid module or OSSP uuid.
We link against libuuid.so, but it was entirely internal to
libnm-core. We only exposed UUIDs in string form.
Add API to also handle UUIDs in binary form.
Note that libuuid already defines a type "uuid_t". However,
don't use it and instead use our own typedef NMUuid.
Reasons:
- uuid.h should be internal to libnm-core (nm-utils.c specifically),
and not be used by or exposed it other parts of the code.
- uuid_t is a typedef for a guchar[16] array. Typedefs
for arrays are confusing, because depending on whether
it's an automatic variable or a pointer in a function argument,
they behave differently regarding whether to take their address
or not and usage of "sizeof()".
Add 3 variants of _nm_utils_hexstr2bin*():
- _nm_utils_hexstr2bin_full(), which takes a preallocated
buffer and fills it.
- _nm_utils_hexstr2bin_alloc() which returns a malloc'ed
buffer
- _nm_utils_hexstr2bin_buf(), which fills a preallocated
buffer of a specific size.
We already have nm_utils_bin2hexstr() and _nm_utils_bin2hexstr_full().
This is confusing.
- nm_utils_bin2hexstr() is public API of libnm. Also, it has
a last argument @final_len to truncate the string at that
length.
It uses no delimiter and lower-case characters.
- _nm_utils_bin2hexstr_full() does not do any truncation, but
it has options to specify a delimiter, the character case,
and to update a given buffer in-place. Also, like
nm_utils_bin2hexstr() and _nm_utils_bin2hexstr() it can
allocate a new buffer on demand.
- _nm_utils_bin2hexstr() would use ':' as delimiter and make
the case configurable. Also, it would always allocate the returned
buffer.
It's too much and confusing. Drop _nm_utils_bin2hexstr() which is internal
API and just a wrapper around _nm_utils_bin2hexstr_full().
It's just more convenient, as it allows better chaining.
Also, allow passing %NULL as @out buffer. It's clear how
large the output buffer must be, so for convenience let the
function (optionally) allocate a new buffer.
This behavior of whether to
- take @out, fill it, and return @out
- take no @out, allocate new buffer, fill and and return it
is slightly error prone. But it was already error prone before, when
it would accept an input buffer without explicit buffer length. I think
this makes it more safe, because in the common case the caller can avoid
pre-allocating a buffer of the right size and the function gets it
right.