Why would we do this? The configuration file we are reading back was
written by NetworkManager in the first place.
Maybe when assuming a connection after restart, this information could
be interesting. It however is not actually relevant.
Note how nm_dhcp_client_get_client_id() has only very few callers.
- nm_device_spawn_iface_helper() in 'nm-device.c'. In this case,
we either should use the client-id which we used when starting
DHCP, or none at all.
- ip4_start() in 'nm-dhcp-dhclient.c', but this is before starting
DHCP client and before it was re-read from configuration file.
- in "src/dhcp/nm-dhcp-systemd.c", but this has no effect for
the dhclient plugin.
(cherry picked from commit 5411fb0cc6)
Our internal DHCP client (from systemd) defaults to a particular client ID.
It is currently exposed as nm_sd_utils_generate_default_dhcp_client_id()
and is based on the systemd implementation.
One problem with that is, that it internally looks up the interface name
with if_indextoname() and reads /etc/machine-id. Both makes it harder
for testing.
Another problem is, that this way of generating the client-id is
currently limited to internal client. Why? If you use dhclient plugin,
you may still want to use the same algorithm. Also, there is no explict
"ipv4.dhcp-client-id" mode to select this client-id (so that it could
be used in combination with "dhclient" plugin).
As such, this code will be useful also aside systemd DHCP plugin.
Hence, the function should not be obviously tied to systemd code.
The implementation is simple enough, and since we already have a
unit-test, refactor the code to our own implementation.
(cherry picked from commit a55795772a)
Internal DHCP client generates a default client ID. For one,
we should ensure that this algorithm does not change without
us noticing, for example, when upgrading systemd code. Add
a test, that the generation algorithm works as we expect.
Also note, that the generation algorithm uses siphash24().
That means, siphash24() implementation also must not change
in the future, to ensure the client ID doesn't change. As we
patch systemd sources to use shared/c-siphash, this is not
obviously the case. Luckily c-siphash and systemd's siphash24 do
agree, so all is good. The test is here to ensure that.
Also, previously the generation algorithm is not exposed as a
function, sd_dhcp_client will just generate a client-id when
it needs it. However, later we want to know (and set) the client
id before starting DHCP and not leave it unspecified to an
implementation detail.
This patch only adds a unit-test for the existing DHCP client
ID generation to have something for comparison. In the next
commit this will change further.
(cherry picked from commit 187d356198)
- use NMUuid type where appropriate.
- no error handling for generate_duid_from_machine_id().
It cannot fail anymore.
- add thread-safety to generate_duid_from_machine_id() with
double-checked locking.
- use unions for converting the sha256 digest to the target
type.
(cherry picked from commit 50121ee028)
For testing purpose, it's bad to let nm_utils_stable_id_parse()
directly access nm_utils_get_boot_id_str(). Instead, the function
should have no side-effects.
Since the boot-id is anyway cached, accessing it is cheap. Even
if it likely won't be needed.
(cherry picked from commit c51e63feb6)
Tests might access the secret-key.
For CI builds we may very well build NM as root and also run
unit tests. In such a situation it's bad to persist the secret
key. For example, the SELinux label may be wrong, and subsequently
starting NetworkManager may cause errors. Avoid persisting the secret
key for tests.
(cherry picked from commit 581e1c3269)
Previously, whenever we needed /etc/machine-id we would re-load it
from file. The are 3 downsides of that:
- the smallest downside is the runtime overhead of repeatedly
reading the file and parse it.
- as we read it multiple times, it may change anytime. Most
code in NetworkManager does not expect or handle a change of
the machine-id.
Generally, the admin should make sure that the machine-id is properly
initialized before NetworkManager starts, and not change it. As such,
a change of the machine-id should never happen in practice.
But if it would change, we would get odd behaviors. Note for example
how generate_duid_from_machine_id() already cached the generated DUID
and only read it once.
It's better to pick the machine-id once, and rely to use the same
one for the remainder of the program.
If the admin wants to change the machine-id, NetworkManager must be
restarted as well (in case the admin cares).
Also, as we now only load it once, it makes sense to log an error
(once) when we fail to read the machine-id.
- previously, loading the machine-id could fail each time. And we
have to somehow handle that error. It seems, the best thing what we
anyway can do, is to log an error once and continue with a fake
machine-id. Here we add a fake machine-id based on the secret-key
or the boot-id. Now obtaining a machine-id can no longer fail
and error handling is no longer necessary.
Also, ensure that a machine-id of all zeros is not valid.
Technically, a machine-id is not an RFC 4122 UUID. But it's
the same size, so we also use NMUuid data structure for it.
While at it, also refactor caching of the boot-id and the secret
key. In particular, fix the thread-safety of the double-checked
locking implementations.
(cherry picked from commit 8308311264)
- add a commnt about thread-safety.
- minor refactoring initializing the value in nm_utils_get_testing().
Instead of returning the flags we just set, go back to the begin
and re-read the value (which must be initialized by now). No big
difference, but feels a bit nicer to me.
(cherry picked from commit e1413111a7)
We have a fork of a lot of useful systemd helper code.
However, until now we shyed away from using it aside from
the bits that we really need.
That means, although we have some really nice implementations
in our source-tree, we didn't use them. Either we were missing
them, or we had to re-implement them.
Add "nm-sd-utils.h" header to very carefully make internal
systemd API accessible to the rest of core.
This is not intended as a vehicle to access all of internal
API. Instead, this must be used with care, and only a hand picked
selection of functions must be exposed. Use with caution, but where it
makes sense.
(cherry picked from commit eece5aff09)
Add 3 variants of _nm_utils_hexstr2bin*():
- _nm_utils_hexstr2bin_full(), which takes a preallocated
buffer and fills it.
- _nm_utils_hexstr2bin_alloc() which returns a malloc'ed
buffer
- _nm_utils_hexstr2bin_buf(), which fills a preallocated
buffer of a specific size.
(cherry picked from commit be6c7fa5f6)
We already have nm_utils_bin2hexstr() and _nm_utils_bin2hexstr_full().
This is confusing.
- nm_utils_bin2hexstr() is public API of libnm. Also, it has
a last argument @final_len to truncate the string at that
length.
It uses no delimiter and lower-case characters.
- _nm_utils_bin2hexstr_full() does not do any truncation, but
it has options to specify a delimiter, the character case,
and to update a given buffer in-place. Also, like
nm_utils_bin2hexstr() and _nm_utils_bin2hexstr() it can
allocate a new buffer on demand.
- _nm_utils_bin2hexstr() would use ':' as delimiter and make
the case configurable. Also, it would always allocate the returned
buffer.
It's too much and confusing. Drop _nm_utils_bin2hexstr() which is internal
API and just a wrapper around _nm_utils_bin2hexstr_full().
(cherry picked from commit b537c0388a)
The need for this is the following:
"ipv4.dhcp-client-id" can be specified via global connection defaults.
In absence of any configuration in NetworkManager, the default depends
on the DHCP client plugin. In case of "dhclient", the default further
depends on /etc/dhcp.
For "internal" plugin, we may very well want to change the default
client-id to "mac" by universally installing a configuration
snippet
[connection-use-mac-client-id]
ipv4.dhcp-client-id=mac
However, if we the user happens to enable "dhclient" plugin, this also
forces the client-id and overrules configuration from /etc/dhcp. The real
problem is, that dhclient can be configured via means outside of NetworkManager,
so our defaults shall not overwrite defaults from /etc/dhcp.
With the new device spec, we can avoid this issue:
[connection-dhcp-client-id]
match-device=except:dhcp-plugin:dhclient
ipv4.dhcp-client-id=mac
This will be part of the solution for rh#1640494. Note that merely
dropping a configuration snippet is not yet enough. More fixes for
DHCP will follow. Also, bug rh#1640494 may have alternative solutions
as well. The nice part of this new feature is that it is generally
useful for configuring connection defaults and not specifically for
the client-id issue.
Note that this match spec is per-device, although the plugin is selected
globally. That makes some sense, because in the future we may or may not
configure the DHCP plugin per-device or per address family.
https://bugzilla.redhat.com/show_bug.cgi?id=1640494
(cherry picked from commit b9eb264efe)
Most singletons can only be instantiated once (unless NM_DEFINE_SINGLETON_ALLOW_MULTIPLE
is defined). Otherwise, an assertion will be triggered if the singleton is destroyed
and another instance is requested.
For testing, we want to create multiple singleton instances and being able to reset
the singleton getter. Add a function for that.
(cherry picked from commit 5f4d8ffa79)
g_string_new_len() allocates the buffer with length
bytes. Maybe it should be obvious (wasn't to me), but
if a init argument is given, that is taken as containing
length bytes.
So,
str = g_string_new_len (init, len);
is more like
str = g_string_new_len (NULL, len);
g_string_append_len (str, init, len);
and not (how I wrongly thought)
str = g_string_new_len (NULL, len);
g_string_append (str, init);
Fixes: 95b006c244
(cherry picked from commit 511709c54d)
This improves performance of fuzzer.
C.f. oss-fuzz#11019.
(cherry picked from commit 3c72b6ed4252e7ff5f7704bfe44557ec197b47fa)
(cherry picked from commit 50403cccee)
This wouldn't even dereference the dangling pointer, but
merely comparing it for pointer equality. Still, it's actually
undefined behavior. Avoid it.
(cherry picked from commit cfc0565604)
This is a change in behavior regarding the filename that we choose when
writing files to "/etc/NetworkManager/system-connections/".
(cherry picked from commit d37ad15f12)
initrd does not use keyfile API from "src/settings/plugins/keyfile",
hence it does not use nms_keyfile_utils_escape_filename() to add
the ".nmconnection" file extension.
I think that is problematic, because it also misses escapings which
are necessary so that NetworkManager will accept the file.
Anyway, the proper solution here would be to move the keyfile utility
functions to libnm-core, alongside base keyfile API. That way, it
could be used by initrd generator.
For now, just dirty fix the generated filename.
Fixes: 648c256b90
(cherry picked from commit 4ca7fa7f4a)
For profiles in "/etc/NetworkManager/system-connections", we did not enforce
that the keyfiles have a special suffix, nor did we generate the
filenames in such a manner. In hindsight, I think that was a mistake.
Recently we added "/run/NetworkManager/system-connections" as additional
keyfile directory. Enforce a suffix and write keyfiles with such a name.
In principle, we could also start writing keyfiles in /etc with the
same suffix. But let's not do that, because we anyway cannot enforce
it.
An ugly part is, that during `nmcli connection load` we need to
determine whether the to-be-loaded connection is under /etc or /run.
Preferably, we would allow any kind of symlinking as what matters
is the file object (inode) and not the path. Anyway, we don't do
that but compare plain paths. That means, paths which are not
in an expected form, will be rejected. In particular, the paths
starting with "/run/..." and "/var/run/..." will be treated differently,
and one of them will be rejected.
Note that ifcfg-rh plugin strictly enforces that the path
starts with IFCFG_DIR as well. So, while this is a breaking
change for keyfile, I think it's reasonable.
(cherry picked from commit 648c256b90)
keyfile already supports omitting the "connection.id" and
"connection.uuid". In that case, the ID would be taken from the
keyfile's name, and the UUID was generated by md5 hashing the
full filename.
No longer do this during nm_keyfile_read(), instead let all
callers call nm_keyfile_read_ensure_*() to their liking. This is done
for two reasons:
- a minor reason is, that one day we want to expose keyfile API
as public API. That means, we also want to read keyfiles from
stdin, where there is no filename available. The implementation
which parses stdio needs to define their own way of auto-generating
ID and UUID. Note how nm_keyfile_read()'s API no longer takes a
filename as argument, which would be awkward for the stdin case.
- Currently, we only support one keyfile directory, which (configurably)
is "/etc/NetworkManager/system-connections".
In the future, we want to support multiple keyfile dirctories, like
"/var/run/NetworkManager/profiles" or "/usr/lib/NetworkManager/profiles".
Here we want that a file "foo" (which does not specify a UUID) gets the
same UUID regardless of the directory it is in. That seems better, because
then the UUID won't change as you move the file between directories.
Yes, that means, that the same UUID will be provided by multiple
files, but NetworkManager must already cope with that situation anyway.
Unfortunately, the UUID generation scheme hashes the full path. That
means, we must hash the path name of the file "foo" inside the
original "system-connections" directory.
Refactor the code so that it accounds for a difference between the
filename of the keyfile, and the profile_dir used for generating
the UUID.
(cherry picked from commit 837d44ffa4)
check_prefix() was only ever called with "." as prefix.
Simplify the implementation to explicitly check for a leading
dot.
(cherry picked from commit 2e5985f2e9)