WiMAX is deprecated since NetworkManager 1.2.0. Note that also
NetworkManager on server side no longer supports this type, hence
the server's D-Bus API will never expose devices of this type.
Note that NMDeviceWimax and NMWimaxNsp are NMObject types. That means,
they are instantiated by NMClient to represent information on the D-Bus
interface. As NetworkManager no longer exposes WiMAX devices, such
devices are never created. Note that it makes no sense that a user would
directly instantiate NMObject types, because they only work together with
NMClient.
Don't drop the related symbols and definitions from libnm, so that there
is no API/ABI change (as far as building and linking is concerned). But
make the types defunctional (which of course is a behavioral API change).
Calling the API now triggers a g_return_*() warning.
Also belatedly mark the WimaxNsp API as deprecated. It should have been
done in 1.2. Note that here we deprecate the API and retire it at the
same time. Optimally, we would have deprecated it a few releases ago,
before retiring it. However, marking something for deprecation is anyway
no excuse for anything. I mean, removing or retiring API is usually
painful, regardless whether it was marked for deprecation or not. In this
case, there is no possibility that a libnm user gets hold on a NMDeviceWimax
or NMWimaxNsp instance, because NMClient simply no longer instantiates
them. Hence, this change should not affect any user in practice.
https://gitlab.freedesktop.org/NetworkManager/NetworkManager/merge_requests/316
Having the NMClient/NMClientClass structs in the public header allows
the user to subclass these types. Subclassing this type was never
intended, nor is it supported, nor does it seem useful. Subclassing only
makes sense if the type has suitable hooks to extend the type in a
meaningful way. NMClient hasn't, and everybody trying to derive from
this class would better delegate the actions.
Also, having these structs in the public header prevents us from
embedding the private data in the object structure itself.
It has thus an runtime overhead and is less convenient for debugging (it's
hard to find the private data pointer in gdb).
Most importantly, there is no easy way to find the offset of the private
data fields, short of calling NM_CLIENT_GET_PRIVATE() -- which currently
is a macro. Later we want to generically lookup the offset of the
private data, we would need NM_CLIENT_GET_PRIVATE() as a function.
Instead, by having an internally, statically known offset, we can use
that offset instead.
Also drop all signal hooks. They are also not useful.
This is an ABI and API change, but of something that we never wanted to
be part of the ABI/API, and which hopefull nobody is using.
It's not yet implemented. But obviously it's interesting to
get the name owner to which the NMClient is currently connected.
Note only that: the name-owner property really says whether
NM is currently running or not.
The used GDBusConnection should be configurable when creating the
NMClient instance. Automatically choosing one of the g_bus_get()
singletons is fine by default, but it's an unnecessary limitation.
We will require this later. The NMClient shall be tied to the GMainContext
at the moment when the instance gets created. This allows the user to have
multiple, indendent NMClient instances (on different threads and GMainContext).
Currently this is still unused, it will be later.
This looks up the GParamSpec from the obj_properties and is
thus more efficient. Also, the generated _notify() function
has the proper argument type and is thus generally preferable.
This is not merely cosmetic. I will need the obj_properties
array to lookup GParamSpec by their PROP_* enum value. The
alternative would be lookup by name, which is more expensive.
We still need the bits in "nm-manager.c", to wait until the
NMActiveConnection instance is ready. This is now done by
nm_manager_complete_active_connection().
Eventually, I will refactor libnm to no longer use gdbus-codegen and
no GDBusProxy. In preparation of that, we must stop using that
API.
As first step, change nm_client_deactivate_connection(). Note how this
was done previously:
- nm_client_deactivate_connection() calls nm_manager_deactivate_connection()
- nmdbus_manager_call_deactivate_connection_sync() calls g_dbus_proxy_call_sync()
- g_dbus_proxy_call_sync() calls g_dbus_connection_call_sync()
Currently this is still a bit ugly, because NMClient doesn't directly
track the GDBusConnection nor the name owner. Instead, we need to peel
it out of the object manager. One day, that will all be nicer, but first
get rid of gdbus-codegen.
We will drop GDBusProxy and the gdbus-codegen classes. First, we need to
replace all D-Bus calls from nmdbus_*() API with plain uses of GDBusConnection.
For that, add accessors to get the dbus-connection and the name-owner.
This API is not beautiful, it's an interim solution for now.
nm_remote_settings_load_connections() and nm_remote_settings_load_connections_async()
behave inconsistently.
It's unexpected, that a FALSE return value may leave @error unset.
Note that before commit 22e830f046 ('settings/d-bus: fix boolean
return value of "LoadConnections"'), the server boolean response
would have been bogus anyway (at least for some versions).
Unify the behavior, and ignore the boolean return value.
Note that D-Bus is fundamentally asynchronous. Doing blocking calls
on top of D-Bus is odd, especially for libnm's NMClient. That is because
NMClient essentially is a client-side cache of the objects from the D-Bus
interface. This cache should be filled exclusively by (asynchronous) D-Bus
events (PropertiesChanged). So, making a blocking D-Bus call means to wait
for a response and return it, while queuing all messages that are received
in the meantime.
Basically there are three ways how a synchronous API on NMClient could behave:
1) the call just calls g_dbus_connection_call_sync(). This means
that libnm sends a D-Bus request via GDBusConnection, and blockingly
waits for the response. All D-Bus messages that get received in the
meantime are queued in the GMainContext that belongs to NMClient.
That means, none of these D-Bus events are processed until we
iterate the GMainContext after the call returns. The effect is,
that NMClient (and all cached objects in there) are unaffected by
the D-Bus request.
Most of the synchronous API calls in libnm are of this kind.
The problem is that the strict ordering of D-Bus events gets
violated.
For some API this is not an immediate problem. Take for example
nm_device_wifi_request_scan(). The call merely blockingly tells
NetworkManager to start scanning, but since NetworkManager's D-Bus
API does not directly expose any state that tells whether we are
currently scanning, this out of order processing of the D-Bus
request is a small issue.
The problem is more obvious for nm_client_networking_set_enabled().
After calling it, NM_CLIENT_NETWORKING_ENABLED is still unaffected
and unchanged, because the PropertiesChanged signal from D-Bus
is not yet processed.
This means, while you make such a blocking call, NMClient's state
does not change. But usually you perform the synchronous call
to change some state. In this form, the blocking call is not useful,
because NMClient only changes the state after iterating the GMainContext,
and not after the blocking call returns.
2) like 1), but after making the blocking g_dbus_connection_call_sync(),
update the NMClient cache artificially. This is what
nm_manager_check_connectivity() does, to "fix" bgo#784629.
This also has the problem of out-of-order events, but it kinda
solves the problem of not changing the state during the blocking
call. But it does so by hacking the state of the cache. I think
this is really wrong because the state should only be updated from
the ordered stream of D-Bus messages (PropertiesChanged signal and
similar). When libnm decides to modify the state, there may be already
D-Bus messages queued that affect this very state.
3) instead of calling g_dbus_connection_call_sync(), use the
asynchronous g_dbus_connection_call(). If we would use a sepaate
GMainContext for all D-Bus related calls, we could ensure that
while we block for the response, we iterate that internal main context.
This might be nice, because all events are processed in order and
after the blocking call returns, the NMClient state is up to date.
The are problems however: current blocking API does not do this,
so it's a significant change in behavior. Also, it might be
unexpected to the user that during the blocking call the entire
content of NMClient's cache might change and all pointers to the
cache might be invalidated. Also, of course NMClient would invoke
signals for all the changes that happen.
Another problem is that this would be more effort to implement
and it involves a small performance overhead for all D-Bus related
calls (because we have to serialize all events in an internal
GMainContext first and then invoke them on the caller's context).
Also, if the users wants this behavior, they could implement it themself
by running libnm in their own GMainContext. Note that libnm might
have bugs to make that really working, but that should be fixed
instead of adding such synchrnous API behavior.
Read also [1], for why blocking calls are wrong.
[1] https://smcv.pseudorandom.co.uk/2008/11/nonblocking/
So, all possible behaviors for synchronous API have severe behavioural
issues. Mark all this API as deprecated. Also, this serves the purpose of
identifying blocking D-Bus calls in libnm.
Note that "deprecated" here does not really mean that the API is going
to be removed. We don't break API. The user may:
- continue to use this API. It's deprecated, awkward and discouraged,
but if it works, by all means use it.
- use asynchronous API. That's the only sensible way to use D-Bus.
If libnm lacks a certain asynchronous counterpart, it should be
added.
- use GDBusConnection directly. There really isn't anything wrong
with D-Bus or GDBusConnection. This deprecated API is just a wrapper
around g_dbus_connection_call_sync(). You may call it directly
without feeling dirty.
---
The only other remainging API is the synchronous GInitable call for
NMClient. That is an entirely separate beast and not particularly
wrong (from an API point of view).
Note that synchronous API in NMSecretAgentOld, NMVpnPluginOld and
NMVpnServicePlugin as not deprecated here. These types are not part
of the D-Bus cache and while they have similar issues, it's less severe
because they have less state.
It should be possible to add a profile with autoconnect blocked form the
start. Update2() has a %NM_SETTINGS_UPDATE2_FLAG_BLOCK_AUTOCONNECT flag to
block autoconnect, and so we need something similar when adding a connection.
As the existing AddConnection() and AddConnectionUnsaved() API is not
extensible, add AddConnection2() that has flags and room for additional
arguments.
Then add and implement the new flag %NM_SETTINGS_ADD_CONNECTION2_FLAG_BLOCK_AUTOCONNECT
for AddConnection2().
Note that libnm's nm_client_add_connection2() API can completely replace
the existing nm_client_add_connection_async() call. In particular, it
will automatically prefer to call the D-Bus methods AddConnection() and
AddConnectionUnsaved(), in order to work with server versions older than
1.20. The purpose of this is that when upgrading the package, the
running NetworkManager might still be older than the installed libnm.
Anyway, so since nm_client_add_connection2_finish() also has a result
output, the caller needs to decide whether he cares about that result.
Hence it has an argument ignore_out_result, which allows to fallback to
the old API. One might argue that a caller who doesn't care about the
output results while still wanting to be backward compatible, should
itself choose to call nm_client_add_connection_async() or
nm_client_add_connection2(). But instead, it's more convenient if the
new function can fully replace the old one, so that the caller does not
need to switch which start/finish method to call.
https://bugzilla.redhat.com/show_bug.cgi?id=1677068
We no longer add these. If you use Emacs, configure it yourself.
Also, due to our "smart-tab" usage the editor anyway does a subpar
job handling our tabs. However, on the upside every user can choose
whatever tab-width he/she prefers. If "smart-tabs" are used properly
(like we do), every tab-width will work.
No manual changes, just ran commands:
F=($(git grep -l -e '-\*-'))
sed '1 { /\/\* *-\*- *[mM]ode.*\*\/$/d }' -i "${F[@]}"
sed '1,4 { /^\(#\|--\|dnl\) *-\*- [mM]ode/d }' -i "${F[@]}"
Check remaining lines with:
git grep -e '-\*-'
The ultimate purpose of this is to cleanup our files and eventually use
SPDX license identifiers. For that, first get rid of the boilerplate lines.
We named the types inconsistently:
- "p2p-wireless" ("libnm-core/nm-setting-p2p-wireless.h")
- "p2p" ("libnm/nm-p2p-peer.h")
- "p2p-wifi" ("src/devices/wifi/nm-device-p2p-wifi.h")
It seems to me, "libnm/nm-p2p-peer.h" should be qualified with a "Wi-Fi"
specific name. It's not just peer-to-peer, it's Wi-Fi P2P.
Yes, there is an inconsistency now, because there is already
"libnm/nm-access-point.h".
It seems to me (from looking at the internet), that the name "Wi-Fi P2P"
is more common than "P2P Wi-Fi" -- although both are used. There is also
the name "Wi-Fi Direct". But it's not clear which name should be
preferred here, so stick to "Wi-Fi P2P".
In this first commit only rename the files. The following commit will
rename the content.
Add a "a{sv}" output argument to "AddAndActivate2" D-Bus API.
"AddAndActivate2" replaces "AddAndActivate" with more options.
It also has a dictionary argument to be forward compatible so that we
hopefully won't need an "AddAndActivate3". However, it lacked a similar
output dictionary. Add it for future extensibility. I think this is
really to workaround a shortcoming of D-Bus, which does provide strong
typing and type information about its API, but does not allow to extend
an existing API in a backward compatible manner. So we either resort to
Method(), Method2(), Method3() variants, or a catch-all variant with a
generic "a{sv}" input/output argument.
In libnm, rename "nm_client_add_and_activate_connection_options()" to
"nm_client_add_and_activate_connection2()". I think libnm API should have
an obvious correspondence with D-Bus API. Or stated differently, if
"AddAndActivateOptions" would be a better name, then the D-Bus API should
be renamed. We should prefer one name over the other, but regardless
of which is preferred, the naming for D-Bus and libnm API should
correspond.
In this case, I do think that AddAndActivate2() is a better name than
AddAndActivateOptions(). Hence I rename the libnm API.
Also, unless necessary, let libnm still call "AddAndActivate" instead of
"AddAndActivate2". Our backward compatibility works the way that libnm
requires a server version at least as new as itself. As such, libnm
theoretically could assume that server version is new enough to support
"AddAndActivate2" and could always use the more powerful variant.
However, we don't need to break compatibility intentionally and for
little gain. Here, it's easy to let libnm also handle old server API, by
continuing to use "AddAndActivate" for nm_client_add_and_activate_connection().
Note that during package update, we don't restart the currently running
NetworkManager instance. In such a scenario, it can easily happen that
nmcli/libnm is newer than the server version. Let's try a bit harder
to not break that.
Changes as discussed in [1].
[1] https://gitlab.freedesktop.org/NetworkManager/NetworkManager/merge_requests/37#note_79876
"bind" specifically binds the lifetime of the activation (NMActiveConnection).
In combination with "persist=volatile", the lifetime of the NMSettingsConnection
is indirectly bound to the NMActiveConnection. But still these concepts make sense
independently.
In the future, it may make sense to also bind the lifetime of the NMSettingsConnection
to the D-Bus client. Hence, rename the option to allow for the distinction.
Also, belatedly fix libnm comment about "bind" only working with
"persist" "volatile".
Fixes: eb883e34a5