I think initializing structs should (almost) be always done with designated
initializers, because otherwise it's easy to get the order wrong. The
problem is that otherwise the order of fields gets additional meaning
not only for the memory layout, but also for the code that initialize
the structs.
Add a macro NM_VARIANT_ATTRIBUTE_SPEC_DEFINE() that replaces the other
(duplicate) macros. This macro also gets it right to mark the struct as
const.
(cherry picked from commit 86dc50d476)
This actually allows the compiler/linker to mark the memory as read-only and any
modification will cause a segmentation fault.
I would also think that it allows the compiler to put the structure directly
beside the outer constant array (in which this pointer is embedded). That is good
locality-wise.
(cherry picked from commit 4e3955e6dd)
- g_ascii_strtoll() accepts leading spaces, but it leaves
the end pointer at the first space after the digit. That means,
we accepted "1: 0" but not "1 :0". We should either consistently
accept spaces around the digits/colon or reject it.
- g_ascii_strtoll() accepts "\v" as a space (just like `man 3 isspace`
comments that "\v" is a space in C and POSIX locale.
For some reasons (unknown to me) g_ascii_isspace() does not treat
"\v" as space. And neither does NM_ASCII_SPACES and
nm_str_skip_leading_spaces().
We should be consistent about what we consider spaces and what not.
It's already odd to accept '\n' as spaces here, but well, lets do
it for the sake of consistency (so that it matches with our
understanding of ASCII spaces, albeit not POSIX's).
- don't use bogus error domains in "g_set_error (error, 1, 0, ..."
That is a bug and we have NM_UTILS_ERROR exactly for error instances
with unspecified domain and code.
- as before, accept a trailing ":" with omitted minor number.
- reject all unexpected characters. strtoll() accepts '+' / '-'
and a "0x" prefix of the numbers (and leading POSIX spaces). Be
strict here and only accepts NM_ASCII_SPACES, ':', and hexdigits.
In particular, don't accept the "0x" prefix.
This parsing would be significantly simpler to implement, if we could
just strdup() the string, split the string at the colon delimiter and
use _nm_utils_ascii_str_to_int64() which gets leading/trailing spaces
right. But let's save the "overhead" of an additional alloc.
(cherry picked from commit cc9f071676)
Most of the caller won't require a deep-clone of the attribute
names. Likely, the fetch the name, so they can lookup the attributes.
In that common case, there is no need to clone the strings themself.
(cherry picked from commit 01e7cb11bf)
The library is called "libnm_core". So the dependency should be called
"libnm_core_dep", like in all other cases.
(cherry picked from commit c27ad37c27)
"libnm-core" implements common functionality for "NetworkManager" and
"libnm".
Note that clients like "nmcli" cannot access the internal API provided
by "libnm-core". So, if nmcli wants to do something that is also done by
"libnm-core", , "libnm", or "NetworkManager", the code would have to be
duplicated.
Instead, such code can be in "libnm-libnm-core-{intern|aux}.la".
Note that:
0) "libnm-libnm-core-intern.la" is used by libnm-core itsself.
On the other hand, "libnm-libnm-core-aux.la" is not used by
libnm-core, but provides utilities on top of it.
1) they both extend "libnm-core" with utlities that are not public
API of libnm itself. Maybe part of the code should one day become
public API of libnm. On the other hand, this is code for which
we may not want to commit to a stable interface or which we
don't want to provide as part of the API.
2) "libnm-libnm-core-intern.la" is statically linked by "libnm-core"
and thus directly available to "libnm" and "NetworkManager".
On the other hand, "libnm-libnm-core-aux.la" may be used by "libnm"
and "NetworkManager".
Both libraries may be statically linked by libnm clients (like
nmcli).
3) it must only use glib, libnm-glib-aux.la, and the public API
of libnm-core.
This is important: it must not use "libnm-core/nm-core-internal.h"
nor "libnm-core/nm-utils-private.h" so the static library is usable
by nmcli which couldn't access these.
Note that "shared/nm-meta-setting.c" is an entirely different case,
because it behaves differently depending on whether linking against
"libnm-core" or the client programs. As such, this file must be compiled
twice.
(cherry picked from commit af07ed01c0)
From the files under "shared/nm-utils" we build an internal library
that provides glib-based helper utilities.
Move the files of that basic library to a new subdirectory
"shared/nm-glib-aux" and rename the helper library "libnm-core-base.la"
to "libnm-glib-aux.la".
Reasons:
- the name "utils" is overused in our code-base. Everything's an
"utils". Give this thing a more distinct name.
- there were additional files under "shared/nm-utils", which are not
part of this internal library "libnm-utils-base.la". All the files
that are part of this library should be together in the same
directory, but files that are not, should not be there.
- the new name should better convey what this library is and what is isn't:
it's a set of utilities and helper functions that extend glib with
funcitonality that we commonly need.
There are still some files left under "shared/nm-utils". They have less
a unifying propose to be in their own directory, so I leave them there
for now. But at least they are separate from "shared/nm-glib-aux",
which has a very clear purpose.
(cherry picked from commit 80db06f768)
We built (among others) two libraries from the sources in "shared/nm-utils":
"libnm-utils-base.la" and "libnm-utils-udev.la".
It's confusing. Instead use directories so there is a direct
correspondence between these internal libraries and the source files.
(cherry picked from commit 2973d68253)
"shared/nm-utils" contains general purpose utility functions that only
depend on glib (and extend glib with some helper functions).
We will also add code that does not use glib, hence it would be good
if the part of "shared/nm-utils" that does not depend on glib, could be
used by these future projects.
Also, we use the term "utils" everywhere. While that covers the purpose
and content well, having everything called "nm-something-utils" is not
great. Instead, call this "nm-std-aux", inspired by "c-util/c-stdaux".
(cherry picked from commit b434b9ec07)
... and the "unescape" variants.
This is replaced by nm_utils_escaped_tokens_split()
and nm_utils_escaped_tokens_escape*() API.
(cherry picked from commit 304eab8703)
- if there is only one vlan in the list, then we can return success
early. That is, because one NMBridgeVlan instance is always valid
due to the way how users must use the API to construct the element.
- the implementation for check_normalizable is only correct, if there
are no duplicate or overlapping ranges. Assert for that. In fact,
all callers first check for errors and then for normalizable errors.
- avoid duplicate calls to nm_bridge_vlan_get_vid_range(). There are
duplicate assertions that we don't need.
- only check for pvid once per range.
- combine calls to g_hash_table_contains() and g_hash_table_add().
(cherry picked from commit a358da096f)
In some cases it is convenient to specify ranges of bridge vlans, as
already supported by iproute2 and natively by kernel. With this commit
it becomes possible to add a range in this way:
nmcli connection modify eth0-slave +bridge-port.vlans "100-200 untagged"
vlan ranges can't be PVIDs because only one PVID vlan can exist.
https://bugzilla.redhat.com/show_bug.cgi?id=1652910
(cherry picked from commit 7093515777)
CC libnm-core/tests/libnm_core_tests_test_general-test-general.o
In file included from ../shared/nm-default.h:280:0,
from ../libnm-core/tests/test-general.c:24:
../libnm-core/tests/test-general.c: In function _sock_addr_endpoint:
../libnm-core/tests/test-general.c:5911:18: error: logical not is only applied to the left hand side of comparison [-Werror=logical-not-parentheses]
g_assert (!host == (port == -1));
^
../shared/nm-utils/nm-macros-internal.h:1793:7: note: in definition of macro __NM_G_BOOLEAN_EXPR_IMPL
if (expr) \
^
/usr/include/glib-2.0/glib/gmacros.h:376:43: note: in expansion of macro _G_BOOLEAN_EXPR
#define G_LIKELY(expr) (__builtin_expect (_G_BOOLEAN_EXPR((expr)), 1))
^
/usr/include/glib-2.0/glib/gtestutils.h:116:49: note: in expansion of macro G_LIKELY
if G_LIKELY (expr) ; else \
^
../libnm-core/tests/test-general.c:5911:2: note: in expansion of macro g_assert
g_assert (!host == (port == -1));
^
Fixes: 713e879d76 ('libnm: add NMSockAddrEndpoint API')
(cherry picked from commit 1e8c08730f)
Replace nm_utils_str_simpletokens_extract_next() by
nm_utils_escaped_tokens_split().
nm_utils_escaped_tokens_split() should become our first choice for
parsing and tokenizing.
Note that both nm_utils_str_simpletokens_extract_next() and
nm_utils_escaped_tokens_split() need to strdup the string once,
and tokenizing takes O(n). So, they are roughtly the same performance
wise. The only difference is, that as we iterate through the tokens,
we might abort early on error with nm_utils_str_simpletokens_extract_next()
and not parse the entire string. But that is a small benefit, since we
anyway always strdup() the string (being O(n) already).
Note that to-string will no longer escape ',' and ';'. This is a change
in behavior, of unreleased API. Also note, that escaping these is no
longer necessary, because nmcli soon will also use nm_utils_escaped_tokens_*().
Another change in behavior is that nm_utils_str_simpletokens_extract_next()
treated invalid escape sequences (backslashes followed by an arbitrary
character), buy stripping the backslash. nm_utils_escaped_tokens_*()
leaves such backslashes as is, and only honors them if they are followed
by a whitespace (the delimiter) or another backslash. The disadvantage
of the new approach is that backslashes are treated differently
depending on the following character. The benefit is, that most
backslashes can now be written verbatim, not requiring them to escape
them with a double-backslash.
Yes, there is a problem with these nested escape schemes:
- the caller may already need to escape backslash in shell.
- then nmcli will use backslash escaping to split the rules at ','.
- then nm_ip_routing_rule_from_string() will honor backslash escaping
for spaces.
- then iifname and oifname use backslash escaping for nm_utils_buf_utf8safe_escape()
to express non-UTF-8 characters (because interface names are not
necessarily UTF-8).
This is only redeamed because escaping is really only necessary for very
unusual cases, if you want to embed a backslash, a space, a comma, or a
non-UTF-8 character. But if you have to, now you will be able to express
that.
The other upside of these layers of escaping is that they become all
indendent from each other:
- shell can accept quoted/escaped arguments and will unescape them.
- nmcli can do the tokenizing for ',' (and escape the content
unconditionally when converting to string).
- nm_ip_routing_rule_from_string() can do its tokenizing without
special consideration of utf8safe escaping.
- NMIPRoutingRule takes iifname/oifname as-is and is not concerned
about nm_utils_buf_utf8safe_escape(). However, before configuring
the rule in kernel, this utf8safe escape will be unescaped to get
the interface name (which is non-UTF8 binary).
(cherry picked from commit b6d0be2d3b)
The call to nm_utils_parse_variant_attributes() is useless. The following
_tc_read_common_opts() call does the same thing. This was probably left
in place by accident.
Before:
# nmcli c modify eth666 tc.qdiscs root
Error: failed to modify tc.qdiscs: '(null)' is not a valid kind The valid syntax is: '[root | parent <handle>] [handle <handle>] <qdisc>'.
After:
# nmcli c modify eth666 tc.qdiscs root
Error: failed to modify tc.qdiscs: kind is missing. The valid syntax is: '[root | parent <handle>] [handle <handle>] <kind>'.
==16725==ERROR: AddressSanitizer: global-buffer-overflow on address 0x0000005a159f at pc 0x00000046fc1b bp 0x7fff6038f900 sp 0x7fff6038f8f0
READ of size 1 at 0x0000005a159f thread T0
#0 0x46fc1a in _do_test_unescape_spaces libnm-core/tests/test-general.c:7791
#1 0x46fe5b in test_nm_utils_unescape_spaces libnm-core/tests/test-general.c:7810
#2 0x7f4ac5fe7fc9 in test_case_run gtestutils.c:2318
#3 0x7f4ac5fe7fc9 in g_test_run_suite_internal gtestutils.c:2403
#4 0x7f4ac5fe7e83 in g_test_run_suite_internal gtestutils.c:2415
#5 0x7f4ac5fe7e83 in g_test_run_suite_internal gtestutils.c:2415
#6 0x7f4ac5fe8281 in g_test_run_suite gtestutils.c:2490
#7 0x7f4ac5fe82a4 in g_test_run (/lib64/libglib-2.0.so.0+0x772a4)
#8 0x48240d in main libnm-core/tests/test-general.c:7994
#9 0x7f4ac5dc9412 in __libc_start_main (/lib64/libc.so.6+0x24412)
#10 0x423ffd in _start (/home/bgalvani/work/NetworkManager/libnm-core/tests/test-general+0x423ffd)
0x0000005a159f is located 49 bytes to the right of global variable '*.LC370' defined in 'libnm-core/tests/test-general.c' (0x5a1560) of size 14
'*.LC370' is ascii string 'nick-5, green'
0x0000005a159f is located 1 bytes to the left of global variable '*.LC371' defined in 'libnm-core/tests/test-general.c' (0x5a15a0) of size 1
'*.LC371' is ascii string ''
SUMMARY: AddressSanitizer: global-buffer-overflow libnm-core/tests/test-general.c:7791 in _do_test_unescape_spaces
We already have code that parses exactly this kinds of string:
nm_utils_parse_inaddr_prefix_bin(). Use it.
Also, it doesn't use g_strsplit_set() to separate a string at the first
'/'. Total overkill.
Previously, nm_utils_strsplit_set_full() would always remove empty
tokens. Add a flag NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY to avoid
that.
This makes nm_utils_strsplit_set_full() return the same result as
g_strsplit_set() and a direct replacement for it -- except for "",
where we return %NULL.
When we delete the runner.name property, the runner object itself gets
deleted if that was the only property, and @runner becomes invalid.
==13818== Invalid read of size 1
==13818== at 0x55EAF4: nm_streq (nm-macros-internal.h:869)
==13818== by 0x55EAF4: _json_team_normalize_defaults (nm-utils.c:5573)
==13818== by 0x566C89: _nm_utils_team_config_set (nm-utils.c:6057)
==13818== by 0x5498A6: _nm_utils_json_append_gvalue (nm-utils-private.h:228)
==13818== by 0x5498A6: set_property (nm-setting-team.c:1622)
==13818== Address 0x182a9330 is 0 bytes inside a block of size 13 free'd
==13818== at 0x4839A0C: free (vg_replace_malloc.c:530)
==13818== by 0x4857868: json_delete_string (value.c:763)
==13818== by 0x4857868: json_delete (value.c:975)
==13818== by 0x4851FA1: UnknownInlinedFun (jansson.h:129)
==13818== by 0x4851FA1: hashtable_do_del (hashtable.c:131)
==13818== by 0x4851FA1: hashtable_del (hashtable.c:289)
==13818== by 0x55DFDD: _json_del_object (nm-utils.c:5384)
==13818== by 0x55EA70: _json_delete_object_on_string_match (nm-utils.c:5532)
==13818== by 0x55EADB: _json_team_normalize_defaults (nm-utils.c:5549)
==13818== by 0x566C89: _nm_utils_team_config_set (nm-utils.c:6057)
==13818== by 0x5498A6: _nm_utils_json_append_gvalue (nm-utils-private.h:228)
==13818== by 0x5498A6: set_property (nm-setting-team.c:1622)
==13818== Block was alloc'd at
==13818== at 0x483880B: malloc (vg_replace_malloc.c:299)
==13818== by 0x4852E8C: lex_scan_string (load.c:389)
==13818== by 0x4852E8C: lex_scan (load.c:620)
==13818== by 0x4853458: parse_object (load.c:738)
==13818== by 0x4853458: parse_value (load.c:862)
==13818== by 0x4853466: parse_object (load.c:739)
==13818== by 0x4853466: parse_value (load.c:862)
==13818== by 0x4853655: parse_json.constprop.7 (load.c:899)
==13818== by 0x48537CF: json_loads (load.c:959)
==13818== by 0x566780: _nm_utils_team_config_set (nm-utils.c:5961)
==13818== by 0x5498A6: _nm_utils_json_append_gvalue (nm-utils-private.h:228)
==13818== by 0x5498A6: set_property (nm-setting-team.c:1622)
Fixes: a5642fd93a ('libnm-core: team: rework defaults management on runner properties')
Traditionally, the MTU in "datagram" transport mode was restricted to
2044. That is no longer the case, relax that.
In fact, choose a very large maximum and don't differenciate between
"connected" mode (they now both use now 65520). This is only the
limitation of the connection profile. Whether setting such large MTUs
actually works must be determined when activating the profile.
Initscripts "ifup-ib" from rdma-core package originally had a limit of 2044.
This was raised to 4092 in rh#1186498. It is suggested to raise it further
in bug rh#1647541.
In general, kernel often does not allow setting large MTUs. And even if it
allows it, it may not work because it also requires the entire network to
be configured accordingly. But that means, it is generally not helpful to
limit the MTU in the connection profile too strictly. Just allow large
MTUs, we need to see at activation time whether the configuration works.
Note also that all other setting types don't validate the range for MTU at
all.
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1186498
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1593334
(rdma-core: raise limit from 2044 to 4092 in ifup-ib)
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1647541
(rdma-core: raise limit beyond 4092 in ifup-ib)
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1532638#c4
(rdma-core: MTU related discussion)
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1534869
(NetworkManager bug about this topic, but with lots of unrelated
discussion. See in particular #c16)
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1653494
libnm-core/nm-keyfile.c:679:32: error: 'key_type' may be used uninitialized in this function [-Werror=maybe-uninitialized]
build_list[build_list_len++] = (BuildListData) {
^
Add NMIPRoutingRule API with a few basic rule properties. More
properties will be added later as we want to support them.
Also, add to/from functions for string/GVariant representations.
These will be needed to persist/load/exchange rules.
The to-string format follows the `ip rule add` syntax, with the aim
to be partially compatible. Full compatibility is not possible though,
for various reasons (see code comment).
Add support for IEEE 802.3 organizationally specific TLVs:
- MAC/PHY configuration/status (IEEE 802.1AB-2009 clause F.2)
- power via medium dependent interface (clause F.3)
- maximum frame size (clause F.4)
Previously we exported the contents of VLAN Name TLV in the 'vid'
(uint32) and 'vlan-name' (string) attributes. This is not entirely
correct as the TLV can appear multiple times.
We need a way to export all the VLAN IDs and names for the
neighbor. Add a new 'vlans' attribute which obsoletes the other two
and is an array of dictionaries, where each dictionary contains the
'vid' and 'name' keys.
Support the management address TLV (IEEE 802.1AB-2009 clause
8.5.9). The TLV can appear multiple times and so it is exported on
D-Bus as an array of dictionaries.