LLMNR and mDNS settings can have their global default value configured
in "NetworkManager.conf".
Global default values should work the way that all regular values of the property
can be configured explicitly in the connection profile. The special "default" value
only indicates to allow lookup of the global default, but it should not have a
meaning of its own.
Note that if mDNS/LLMNR settings are left unspecified, we will set the
argument to SetLinkMulticastDNS() and SetLinkLLMNR() functions to "",
which means that systemd-resolved decides on a default. Also, depending
on the DNS plugin, the default value differs. This is all fine however.
In this case, the ultimate default value depends on other things (like
the DNS plugin), but each possible value is in fact explicitly
configurable. We also do that for "ipv6.ip6-privacy".
Anyway, cleanup the documentation a bit and try to better explain what
the default is.
This will make NetworkManager look up APN, username, and password in the
Mobile Broadband Provider database.
It is mutually exclusive with the apn, username and password properties.
If that is the case, the connection will be normalized to
auto-config=false. This makes it convenient for the user to turn off the
automatism by just setting the apn.
NM didn't support wpa-none for years because kernel drivers used to be
broken. Note that it wasn't even possible to *add* a connection with
wpa-none because it was rejected in nm_settings_add_connection_dbus().
Given that wpa-none is also deprecated in wpa_supplicant and is
considered insecure, drop altogether any reference to it.
For WireGuard (like for all IP-tunnels and IP-based VPNs), the IP addresses of
the peers must be reached outside the tunnel/VPN itself.
For VPN connections, NetworkManager usually adds a direct /32 route to
the external VPN gateway to the underlying device. For WireGuard that is
not done, because injecting a route to another device is ugly and error
prone. Worse: WireGuard with automatic roaming and multiple peers makes this
more complicated.
This is commonly a problem when setting the default-route via the VPN,
but there are also other subtle setups where special care must be taken
to prevent such routing loops.
WireGuard's wg-quick provides a simple, automatic solution by adding two policy
routing rules and relying on the WireGuard packets having a fwmark set (see [1]).
Let's also do that. Add new properties "wireguard.ip4-auto-default-route"
and "wireguard.ip6-auto-default-route" to enable/disable this. Note that
the default value lets NetworkManager automatically choose whether to
enable it (depending on whether there are any peers that have a default
route). This means, common scenarios should now work well without additional
configuration.
Note that this is also a change in behavior and upon package upgrade
NetworkManager may start adding policy routes (if there are peers that
have a default-route). This is a change in behavior, as the user already
clearly had this setup working and configured some working solution
already.
The new automatism picks the rule priority automatically and adds the
default-route to the routing table that has the same number as the fwmark.
If any of this is unsuitable, then the user is free to disable this
automatism. Note that since 1.18.0 NetworkManager supports policy routing (*).
That means, what this automatism does can be also achieved via explicit
configuration of the profile, which gives the user more flexibility to
adjust all parameters explicitly).
(*) but only since 1.20.0 NetworkManager supports the "suppress_prefixlength"
rule attribute, which makes it impossible to configure exactly this rule-based
solution with 1.18.0 NetworkManager.
[1] https://www.wireguard.com/netns/#improved-rule-based-routing
Initscripts already honor the DEVTIMEOUT variable (rh #1171917).
Don't make this a property only supported by initscripts. Every
useful property should also be supported by keyfile and it should
be accessible via D-Bus.
Also, I will soon drop NMSIfcfgConnection, so handling this would
require extra code. It's easier when DEVTIMEOUT is a regular property of
the connection profile.
The property is not yet implemented. ifcfg-rh still uses the old
implementation, and keyfile is not yet adjusted. Since both keyfile
and ifcfg-rh will both be rewritten soon, this property will be
implemented then.
Completely refactor the team/JSON handling in libnm's NMSettingTeam and
NMSettingTeamPort.
- team handling was added as rh#1398925. The goal is to have a more
convenient way to set properties than constructing JSON. This requires
libnm to implement the hard task of parsing JSON (and exposing well-understood
properties) and generating JSON (based on these "artificial" properties).
But not only libnm. In particular nmcli and the D-Bus API must make this
"simpler" API accessible.
- since NMSettingTeam and NMSettingTeamPort are conceptually the same,
add "libnm-core/nm-team-utils.h" and NMTeamSetting that tries to
handle the similar code side-by-sdie.
The setting classes now just delegate for everything to NMTeamSetting.
- Previously, there was a very fuzzy understanding of the provided
JSON config. Tighten that up, when setting a JSON config it
regenerates/parses all other properties and tries to make the
best of it. When modifying any abstraction property, the entire
JSON config gets regenerated. In particular, don't try to merge
existing JSON config with the new fields. If the user uses the
abstraction API, then the entire JSON gets replaced.
For example note that nm_setting_team_add_link_watcher() would not
be reflected in the JSON config (a bug). That only accidentally worked
because client would serializing the changed link watcher to
GVariant/D-Bus, then NetworkManager would set it via g_object_set(),
which would renerate the JSON, and finally persist it to disk. But
as far as libnm is concerned, nm_setting_team_add_link_watcher() would
bring the settings instance in an inconsistent state where JSON and
the link watcher property disagree. Setting any property must
immediately update both the JSON and the abstraction API.
- when constucting a team setting from D-Bus, we would previously parse
both "config" and abstraction properties. That is wrong. Since our
settings plugins only support JSON, all information must be present
in the JSON config anyway. So, when "config" is present, only the JSON
must be parsed. In the best case, the other information is redudant and
contributes nothing. In the worse case, they information differs
(which might happen if the client version differs from the server
version). As the settings plugin only supports JSON, it's wrong to
consider redundant, differing information from D-Bus.
- we now only convert string to JSON or back when needed. Previously,
setting a property resulted in parsing several JSON multiple times
(per property). All operations should now scale well and be reasonably
efficient.
- also the property-changed signals are now handled correctly. Since
NMTeamSetting knows the current state of all attributes, it can emit
the exact property changed signals for what changed.
- we no longer use libjansson to generate the JSON. JSON is supposed
to be a machine readable exchange format, hence a major goal is
to be easily handled by applications. While parsing JSON is not so
trivial, writing a well-known set of values to JSON is.
The advantage is that when you build libnm without libjansson support,
then we still can convert the artificial properties to JSON.
- Requiring libjansson in libnm is a burden, because most of the time
it is not needed (as most users don't create team configurations). With
this change we only require it to parse the team settings (no longer to
write them). It should be reasonably simple to use a more minimalistic
JSON parser that is sufficient for us, so that we can get rid of the
libjansson dependency (for libnm). This also avoids the pain that we have
due to the symbol collision of libjansson and libjson-glib.
https://bugzilla.redhat.com/show_bug.cgi?id=1691619
In some cases it is convenient to specify ranges of bridge vlans, as
already supported by iproute2 and natively by kernel. With this commit
it becomes possible to add a range in this way:
nmcli connection modify eth0-slave +bridge-port.vlans "100-200 untagged"
vlan ranges can't be PVIDs because only one PVID vlan can exist.
https://bugzilla.redhat.com/show_bug.cgi?id=1652910
(cherry picked from commit 7093515777)
For now only add the core settings, no peers' data.
To support peers and the allowed-ips of the peers is more complicated
and will be done later. It's more complicated because these are nested
lists (allowed-ips) inside a list (peers). That is quite unusual and to
conveniently support that in D-Bus API, in keyfile format, in libnm,
and nmcli, is a effort.
Also, it's further complicated by the fact that each peer has a secret (the
preshared-key). Thus we probably need secret flags for each peer, which
is a novelty as well (until now we require a fixed set of secrets per
profile that is well known).
This adds support for configuring the Wi-Fi connections to use SAE. SAE
is a password-based authentication mechanism that replaces WPA-PSK in
WPA3-Personal.
The pass phrase is still stored in the "psk" property, with some
limitations lifted.
The 'number' property in GSM settings is a legacy thing that comes
from when ModemManager used user-provided numbers, if any, to connect
3GPP modems.
Since ModemManager 1.0, this property is completely unused for 3GPP
modems, and so it doesn't make sense to use it in the NetworkManager
settings. Ofono does not use it either.
For AT+PPP-based 3GPP modems, the 'number' to call to establish the
data connection is decided by ModemManager itself, e.g. for standard
GSM/UMTS/LTE modems it will connect a given predefined PDP context,
and for other modems like Iridium it will have the number to call
hardcoded in the plugin itself.
https://github.com/NetworkManager/NetworkManager/pull/261
Describe how to specify multiple VFs and which attributes are
supported, so that this information is available in the nm-settings
manual page.
Also, clarify that SR-IOV parameters are managed only when the setting
is present.
https://bugzilla.redhat.com/show_bug.cgi?id=1651979
Add a new mode for the DHCPv4 client identifier.
"duid" is what the internal (systemd) DHCP client already does by
default. It is also the same as used by systemd-networkd's
"ClientIdentifier=duid" setting. What we still lack (compared to
networkd) are a way to overwrite IAID and the DUID.
Previously, this mode was used by the internal DHCP plugin
by default. However, it could not be explicitly configured.
In general, our default values should also be explicitly selectable.
Now the "duid" client identifier can also be used with the "dhclient"
plugin.
We already had "${DEVICE}" which uses the interface name.
In times of predictable interface naming, that works well.
It allows the user to generate IDs per device which don't
change when the hardware is replaced.
"${MAC}" is similar, except that is uses the permanent MAC
address of the device. The substitution results in the empty
word, if the device has no permanent MAC address (like software
devices).
The per-device substitutions "${DEVICE}" and "${MAC}" are especially
interesting with "connection.multi-connect=multiple".