This will make NetworkManager look up APN, username, and password in the
Mobile Broadband Provider database.
It is mutually exclusive with the apn, username and password properties.
If that is the case, the connection will be normalized to
auto-config=false. This makes it convenient for the user to turn off the
automatism by just setting the apn.
For WireGuard (like for all IP-tunnels and IP-based VPNs), the IP addresses of
the peers must be reached outside the tunnel/VPN itself.
For VPN connections, NetworkManager usually adds a direct /32 route to
the external VPN gateway to the underlying device. For WireGuard that is
not done, because injecting a route to another device is ugly and error
prone. Worse: WireGuard with automatic roaming and multiple peers makes this
more complicated.
This is commonly a problem when setting the default-route via the VPN,
but there are also other subtle setups where special care must be taken
to prevent such routing loops.
WireGuard's wg-quick provides a simple, automatic solution by adding two policy
routing rules and relying on the WireGuard packets having a fwmark set (see [1]).
Let's also do that. Add new properties "wireguard.ip4-auto-default-route"
and "wireguard.ip6-auto-default-route" to enable/disable this. Note that
the default value lets NetworkManager automatically choose whether to
enable it (depending on whether there are any peers that have a default
route). This means, common scenarios should now work well without additional
configuration.
Note that this is also a change in behavior and upon package upgrade
NetworkManager may start adding policy routes (if there are peers that
have a default-route). This is a change in behavior, as the user already
clearly had this setup working and configured some working solution
already.
The new automatism picks the rule priority automatically and adds the
default-route to the routing table that has the same number as the fwmark.
If any of this is unsuitable, then the user is free to disable this
automatism. Note that since 1.18.0 NetworkManager supports policy routing (*).
That means, what this automatism does can be also achieved via explicit
configuration of the profile, which gives the user more flexibility to
adjust all parameters explicitly).
(*) but only since 1.20.0 NetworkManager supports the "suppress_prefixlength"
rule attribute, which makes it impossible to configure exactly this rule-based
solution with 1.18.0 NetworkManager.
[1] https://www.wireguard.com/netns/#improved-rule-based-routing
It should be possible to add a profile with autoconnect blocked form the
start. Update2() has a %NM_SETTINGS_UPDATE2_FLAG_BLOCK_AUTOCONNECT flag to
block autoconnect, and so we need something similar when adding a connection.
As the existing AddConnection() and AddConnectionUnsaved() API is not
extensible, add AddConnection2() that has flags and room for additional
arguments.
Then add and implement the new flag %NM_SETTINGS_ADD_CONNECTION2_FLAG_BLOCK_AUTOCONNECT
for AddConnection2().
Note that libnm's nm_client_add_connection2() API can completely replace
the existing nm_client_add_connection_async() call. In particular, it
will automatically prefer to call the D-Bus methods AddConnection() and
AddConnectionUnsaved(), in order to work with server versions older than
1.20. The purpose of this is that when upgrading the package, the
running NetworkManager might still be older than the installed libnm.
Anyway, so since nm_client_add_connection2_finish() also has a result
output, the caller needs to decide whether he cares about that result.
Hence it has an argument ignore_out_result, which allows to fallback to
the old API. One might argue that a caller who doesn't care about the
output results while still wanting to be backward compatible, should
itself choose to call nm_client_add_connection_async() or
nm_client_add_connection2(). But instead, it's more convenient if the
new function can fully replace the old one, so that the caller does not
need to switch which start/finish method to call.
https://bugzilla.redhat.com/show_bug.cgi?id=1677068
WireGuard's wq-quick configures such rules to avoid routing loops.
While we currently don't have an automatic solution for this, at least
we should support it via explicit user configuration.
One problem is that suppress_prefixlength is relatively new and kernel
might not support this attribute. That can lead to odd results, because
the NetworkManager is valid but it cannot be configured on the current
kernel. But this is a general problem, and we would require a general
solution. The solution cannot be to only support rule attributes that
are supported by the oldest possible kernel. It's not clear how much of
a problem there really is, or which general solution is required (if
any).
Initscripts already honor the DEVTIMEOUT variable (rh #1171917).
Don't make this a property only supported by initscripts. Every
useful property should also be supported by keyfile and it should
be accessible via D-Bus.
Also, I will soon drop NMSIfcfgConnection, so handling this would
require extra code. It's easier when DEVTIMEOUT is a regular property of
the connection profile.
The property is not yet implemented. ifcfg-rh still uses the old
implementation, and keyfile is not yet adjusted. Since both keyfile
and ifcfg-rh will both be rewritten soon, this property will be
implemented then.
Also, plan right away to backport this symbol all the way back to
1.14.8. As such, we only need to add it once, with the right linker
version "libnm_1_14_8".
But still, the symbols first appears on a major release 1.20.0.
It's rather limiting if we have no API to ask NMSettingEthtool which
options are set.
Note that currently NMSettingEthtool only supports offload features.
In the future, it should also support other options like coalesce
or ring options. Hence, this returns all option names, not only
features.
If a caller needs to know whether the name is an option name, he/she
should call nm_ethtool_optname_is_feature().
In some cases it is convenient to specify ranges of bridge vlans, as
already supported by iproute2 and natively by kernel. With this commit
it becomes possible to add a range in this way:
nmcli connection modify eth0-slave +bridge-port.vlans "100-200 untagged"
vlan ranges can't be PVIDs because only one PVID vlan can exist.
https://bugzilla.redhat.com/show_bug.cgi?id=1652910
(cherry picked from commit 7093515777)
Add NMIPRoutingRule API with a few basic rule properties. More
properties will be added later as we want to support them.
Also, add to/from functions for string/GVariant representations.
These will be needed to persist/load/exchange rules.
The to-string format follows the `ip rule add` syntax, with the aim
to be partially compatible. Full compatibility is not possible though,
for various reasons (see code comment).
A NetworkManager client requires an API to validate and decode
a base64 secret -- like it is used by WireGuard. If we don't have
this as part of the API, it's inconvenient. Expose it.
Rename it from _nm_utils_wireguard_decode_key(), to give it a more
general name.
Also, rename _nm_utils_wireguard_normalize_key() to
nm_utils_base64secret_normalize(). But this one we keep as internal
API. The user will care more about validating and decoding the base64
key. To convert the key back to base64, we don't need a public API in
libnm.
This is another ABI change since 1.16-rc1.
(cherry picked from commit e46ba01867)
For now only add the core settings, no peers' data.
To support peers and the allowed-ips of the peers is more complicated
and will be done later. It's more complicated because these are nested
lists (allowed-ips) inside a list (peers). That is quite unusual and to
conveniently support that in D-Bus API, in keyfile format, in libnm,
and nmcli, is a effort.
Also, it's further complicated by the fact that each peer has a secret (the
preshared-key). Thus we probably need secret flags for each peer, which
is a novelty as well (until now we require a fixed set of secrets per
profile that is well known).
This is a protocol specific extension to Wi-Fi frames which need to be
set in certain conditions. The P2P device will use this to update the
corresponding wpa_supplicant property.
These were dropped earlier as new sync API must not be the primary way
of calling new routines in libnm.
In this particular case the DBus calls are simple and unlikely to fail.
Most users should use the normal async API and call the finish routine.
However, if the API user is not interested in the result, then they can
simply set the callback to NULL to ignore it.
[thaller@redhat.com: added options argument to start-find method]
Having synchronous API is wrong, or at least questionable.
Granted, libnm isn't currently very good about the exact order
of things to happen. However synchronous API by design delays events
while waiting for the response and hence messes up the ordering.
Maybe synchronous API should not be added to libnm.
Or at least, if we have synchronous API, we certainly need an asynchrnous
variant as well (which is still missing).
As synchronous API is not preferred, it should also be named
nm_some_thing_sync(), accompanied by nm_some_thing() and
nm_some_thing_finish(). The name for the synchronous method should be the
odd one and we shouldn't have an nm_some_thing_async(). Yes, libnm is not
consistend about that.
I am going to drop this API for the moment.
Add a "a{sv}" output argument to "AddAndActivate2" D-Bus API.
"AddAndActivate2" replaces "AddAndActivate" with more options.
It also has a dictionary argument to be forward compatible so that we
hopefully won't need an "AddAndActivate3". However, it lacked a similar
output dictionary. Add it for future extensibility. I think this is
really to workaround a shortcoming of D-Bus, which does provide strong
typing and type information about its API, but does not allow to extend
an existing API in a backward compatible manner. So we either resort to
Method(), Method2(), Method3() variants, or a catch-all variant with a
generic "a{sv}" input/output argument.
In libnm, rename "nm_client_add_and_activate_connection_options()" to
"nm_client_add_and_activate_connection2()". I think libnm API should have
an obvious correspondence with D-Bus API. Or stated differently, if
"AddAndActivateOptions" would be a better name, then the D-Bus API should
be renamed. We should prefer one name over the other, but regardless
of which is preferred, the naming for D-Bus and libnm API should
correspond.
In this case, I do think that AddAndActivate2() is a better name than
AddAndActivateOptions(). Hence I rename the libnm API.
Also, unless necessary, let libnm still call "AddAndActivate" instead of
"AddAndActivate2". Our backward compatibility works the way that libnm
requires a server version at least as new as itself. As such, libnm
theoretically could assume that server version is new enough to support
"AddAndActivate2" and could always use the more powerful variant.
However, we don't need to break compatibility intentionally and for
little gain. Here, it's easy to let libnm also handle old server API, by
continuing to use "AddAndActivate" for nm_client_add_and_activate_connection().
Note that during package update, we don't restart the currently running
NetworkManager instance. In such a scenario, it can easily happen that
nmcli/libnm is newer than the server version. Let's try a bit harder
to not break that.
Changes as discussed in [1].
[1] https://gitlab.freedesktop.org/NetworkManager/NetworkManager/merge_requests/37#note_79876
Add support for the teaming arp_ping link watcher 'vlanid' property.
Signed-off-by: Patrick Talbert <ptalbert@redhat.com>
[thaller@redhat.com: minor fixes to original patch]
https://bugzilla.redhat.com/show_bug.cgi?id=1652931
Synchronous D-Bus calls seems harmful to me, such API should not be
added to libnm. As such, all API is by default and preferably "_async".
Don't add an "_async" suffix. While we are not consistent in libnm about
this, I think for new code we should.
This adds the new methods nm_client_add_and_activate_connection_options_*
and ports the existing methods to use the new AddAndActivateConnection2
call rather than AddAndActivateConnection, allowing further parameters
to be passed in.
Note that NMSettingEthtool and NMSettingMatch don't have such
functions either.
We have API
nm_connection_get_setting (NMConnection *, GType)
nm_connection_get_setting_by_name (NMConnection *, const char *)
which can be used generically, meaning: the requested setting type
is an argument to the function. That is generally more useful and
flexible.
Don't add API which duplicates existing functionality and is (arguably)
inferiour. Drop it now. This is an ABI/API break for the current development
cycle where the 1.14.0 API is still unstable. Indeed it's already after
1.14-rc1, which is ugly. But it's also unlikely that somebody already uses
this API/ABI and is badly impacted by this change.
Note that nm_connection_get_setting() and nm_connection_get_setting_by_name()
are slightly inconvenient in C still, because they usually require a cast.
We should fix that by changing the return type to "void *". Such
a change may be possibly any time without breaking API/ABI (almost, it'd
be an API change when taking a function pointer without casting).
(cherry picked from commit a10156f516)
Add a new 'match' setting containing properties to match a connection
to devices. At the moment only the interface-name property is present
and, contrary to connection.interface-name, it allows the use of
wildcards.
Note that in NetworkManager API (D-Bus, libnm, and nmcli),
the features are called "feature-xyz". The "feature-" prefix
is used, because NMSettingEthtool possibly will gain support
for options that are not only -K|--offload|--features, for
example -C|--coalesce.
The "xzy" suffix is either how ethtool utility calls the feature
("tso", "rx"). Or, if ethtool utility specifies no alias for that
feature, it's the name from kernel's ETH_SS_FEATURES ("tx-tcp6-segmentation").
If possible, we prefer ethtool utility's naming.
Also note, how the features "feature-sg", "feature-tso", and
"feature-tx" actually refer to multiple underlying kernel features
at once. This too follows what ethtool utility does.
The functionality is not yet implemented server-side.
Add a new option that allows to activate a profile multiple times
(at the same time). Previoulsy, all profiles were implicitly
NM_SETTING_CONNECTION_MULTI_CONNECT_SINGLE, meaning, that activating
a profile that is already active will deactivate it first.
This will make more sense, as we also add more match-options how
profiles can be restricted to particular devices. We already have
connection.type, connection.interface-name, and (ethernet|wifi).mac-address
to restrict a profile to particular devices. For example, it is however
not possible to specify a wildcard like "eth*" to match a profile to
a set of devices by interface-name. That is another missing feature,
and once we extend the matching capabilities, it makes more sense to
activate a profile multiple times.
See also https://bugzilla.redhat.com/show_bug.cgi?id=997998, which
previously changed that a connection is restricted to a single activation
at a time. This work relaxes that again.
This only adds the new property, it is not used nor implemented yet.
https://bugzilla.redhat.com/show_bug.cgi?id=1555012