mirror of
https://gitlab.freedesktop.org/NetworkManager/NetworkManager.git
synced 2026-02-10 04:20:30 +01:00
Squashed 'src/c-rbtree/' content from commit 8aa7bd1828ee
git-subtree-dir: src/c-rbtree git-subtree-split: 8aa7bd1828eedb19960f9eef98d15543ec9f34eb
This commit is contained in:
commit
1b61323231
19 changed files with 3232 additions and 0 deletions
11
.editorconfig
Normal file
11
.editorconfig
Normal file
|
|
@ -0,0 +1,11 @@
|
|||
root = true
|
||||
|
||||
[*]
|
||||
end_of_line = lf
|
||||
insert_final_newline = true
|
||||
trim_trailing_whitespace = true
|
||||
charset = utf-8
|
||||
|
||||
[*.{c,h}]
|
||||
indent_style = space
|
||||
indent_size = 8
|
||||
33
.github/workflows/ci.yml
vendored
Normal file
33
.github/workflows/ci.yml
vendored
Normal file
|
|
@ -0,0 +1,33 @@
|
|||
name: Continuous Integration
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
schedule:
|
||||
- cron: '0 0 * * *'
|
||||
|
||||
jobs:
|
||||
ci:
|
||||
name: CI with Default Configuration
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Fetch Sources
|
||||
uses: actions/checkout@v2
|
||||
- name: Run through C-Util CI
|
||||
uses: c-util/automation/src/ci-c-util@v1
|
||||
with:
|
||||
m32: 1
|
||||
valgrind: 1
|
||||
|
||||
ci-ptrace:
|
||||
name: Reduced CI with PTrace
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
CRBTREE_TEST_PTRACE: '1'
|
||||
|
||||
steps:
|
||||
- name: Fetch Sources
|
||||
uses: actions/checkout@v2
|
||||
- name: Run through C-Util CI
|
||||
uses: c-util/automation/src/ci-c-util@v1
|
||||
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
|
|
@ -0,0 +1,3 @@
|
|||
[submodule "subprojects/c-stdaux"]
|
||||
path = subprojects/c-stdaux
|
||||
url = https://github.com/c-util/c-stdaux.git
|
||||
39
AUTHORS
Normal file
39
AUTHORS
Normal file
|
|
@ -0,0 +1,39 @@
|
|||
LICENSE:
|
||||
This project is dual-licensed under both the Apache License, Version
|
||||
2.0, and the GNU Lesser General Public License, Version 2.1+.
|
||||
|
||||
AUTHORS-ASL:
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
AUTHORS-LGPL:
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms of the GNU Lesser General Public License as published
|
||||
by the Free Software Foundation; either version 2.1 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program; If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
COPYRIGHT: (ordered alphabetically)
|
||||
Copyright (C) 2015-2019 Red Hat, Inc.
|
||||
|
||||
AUTHORS: (ordered alphabetically)
|
||||
David Rheinsberg <david.rheinsberg@gmail.com>
|
||||
Kay Sievers <kay@vrfy.org>
|
||||
Thomas Haller <thaller@redhat.com>
|
||||
Tom Gundersen <teg@jklm.no>
|
||||
40
NEWS.md
Normal file
40
NEWS.md
Normal file
|
|
@ -0,0 +1,40 @@
|
|||
# c-rbtree - Intrusive Red-Black Tree Collection
|
||||
|
||||
## CHANGES WITH 3:
|
||||
|
||||
* Add more helpers. Add both a collection of iteratiors and helpers
|
||||
for initializing a tree and checking if a tree is empty, without
|
||||
explicitly accessing the data structure.
|
||||
|
||||
Contributions from: David Herrmann
|
||||
|
||||
- Berlin, 2017-08-13
|
||||
|
||||
## CHANGES WITH 2:
|
||||
|
||||
* Relicense as ASL-2.0 to make c-rbtree useful for more projects. All
|
||||
code is now fully available under the ASL-2.0. Nothing is covered by
|
||||
the LGPL, anymore.
|
||||
|
||||
* Switch build-system from Autotools to Meson. This simplifies the code
|
||||
base significantly. The Meson Build System is now used by many other
|
||||
projects, including GStreamer, Weston, and several Gnome packages.
|
||||
See http://mesonbuild.com/ for more information.
|
||||
|
||||
Contributions from: David Herrmann
|
||||
|
||||
- Berlin, 2016-12-14
|
||||
|
||||
## CHANGES WITH 1:
|
||||
|
||||
* Initial release of c-rbtree.
|
||||
|
||||
* This projects provides an RB-Tree API, that is fully implemented in
|
||||
ISO-C11 and has no external dependencies. Furthermore, tree
|
||||
traversal, memory allocations, and key comparisons are completely
|
||||
controlled by the API user. The implementation only provides the
|
||||
RB-Tree specific rebalancing and coloring.
|
||||
|
||||
Contributions from: David Herrmann, Kay Sievers, Tom Gundersen
|
||||
|
||||
- Berlin, 2016-08-31
|
||||
54
README.md
Normal file
54
README.md
Normal file
|
|
@ -0,0 +1,54 @@
|
|||
c-rbtree
|
||||
========
|
||||
|
||||
Intrusive Red-Black Tree Collection
|
||||
|
||||
The c-rbtree project implements an intrusive collection based on red-black
|
||||
trees in ISO-C11. Its API guarantees the user full control over its
|
||||
data-structures, and rather limits itself to just the tree-specific rebalancing
|
||||
and coloring operations. For API documentation, see the c-rbtree.h header file,
|
||||
as well as the docbook comments for each function.
|
||||
|
||||
### Project
|
||||
|
||||
* **Website**: <https://c-util.github.io/c-rbtree>
|
||||
* **Bug Tracker**: <https://github.com/c-util/c-rbtree/issues>
|
||||
|
||||
### Requirements
|
||||
|
||||
The requirements for this project are:
|
||||
|
||||
* `libc` (e.g., `glibc >= 2.16`)
|
||||
|
||||
At build-time, the following software is required:
|
||||
|
||||
* `meson >= 0.41`
|
||||
* `pkg-config >= 0.29`
|
||||
|
||||
### Build
|
||||
|
||||
The meson build-system is used for this project. Contact upstream
|
||||
documentation for detailed help. In most situations the following
|
||||
commands are sufficient to build and install from source:
|
||||
|
||||
```sh
|
||||
mkdir build
|
||||
cd build
|
||||
meson setup ..
|
||||
ninja
|
||||
meson test
|
||||
ninja install
|
||||
```
|
||||
|
||||
No custom configuration options are available.
|
||||
|
||||
### Repository:
|
||||
|
||||
- **web**: <https://github.com/c-util/c-rbtree>
|
||||
- **https**: `https://github.com/c-util/c-rbtree.git`
|
||||
- **ssh**: `git@github.com:c-util/c-rbtree.git`
|
||||
|
||||
### License:
|
||||
|
||||
- **Apache-2.0** OR **LGPL-2.1-or-later**
|
||||
- See AUTHORS file for details.
|
||||
19
meson.build
Normal file
19
meson.build
Normal file
|
|
@ -0,0 +1,19 @@
|
|||
project(
|
||||
'c-rbtree',
|
||||
'c',
|
||||
version: '3',
|
||||
license: 'Apache',
|
||||
default_options: [
|
||||
'c_std=c11'
|
||||
],
|
||||
)
|
||||
project_description = 'Intrusive Red-Black Tree Collection'
|
||||
|
||||
add_project_arguments('-D_GNU_SOURCE', language: 'c')
|
||||
mod_pkgconfig = import('pkgconfig')
|
||||
|
||||
sub_cstdaux = subproject('c-stdaux')
|
||||
|
||||
dep_cstdaux = sub_cstdaux.get_variable('libcstdaux_dep')
|
||||
|
||||
subdir('src')
|
||||
35
src/c-rbtree-private.h
Normal file
35
src/c-rbtree-private.h
Normal file
|
|
@ -0,0 +1,35 @@
|
|||
#pragma once
|
||||
|
||||
/*
|
||||
* Private definitions
|
||||
* This file contains private definitions for the RB-Tree implementation, but
|
||||
* which are used by our test-suite.
|
||||
*/
|
||||
|
||||
#include <c-stdaux.h>
|
||||
#include <stddef.h>
|
||||
#include "c-rbtree.h"
|
||||
|
||||
/*
|
||||
* Nodes
|
||||
*/
|
||||
|
||||
static inline void *c_rbnode_raw(CRBNode *n) {
|
||||
return (void *)(n->__parent_and_flags & ~C_RBNODE_FLAG_MASK);
|
||||
}
|
||||
|
||||
static inline unsigned long c_rbnode_flags(CRBNode *n) {
|
||||
return n->__parent_and_flags & C_RBNODE_FLAG_MASK;
|
||||
}
|
||||
|
||||
static inline _Bool c_rbnode_is_red(CRBNode *n) {
|
||||
return c_rbnode_flags(n) & C_RBNODE_RED;
|
||||
}
|
||||
|
||||
static inline _Bool c_rbnode_is_black(CRBNode *n) {
|
||||
return !(c_rbnode_flags(n) & C_RBNODE_RED);
|
||||
}
|
||||
|
||||
static inline _Bool c_rbnode_is_root(CRBNode *n) {
|
||||
return c_rbnode_flags(n) & C_RBNODE_ROOT;
|
||||
}
|
||||
1120
src/c-rbtree.c
Normal file
1120
src/c-rbtree.c
Normal file
File diff suppressed because it is too large
Load diff
437
src/c-rbtree.h
Normal file
437
src/c-rbtree.h
Normal file
|
|
@ -0,0 +1,437 @@
|
|||
#pragma once
|
||||
|
||||
/**
|
||||
* Standalone Red-Black-Tree Implementation in Standard ISO-C11
|
||||
*
|
||||
* This library provides an RB-Tree API, that is fully implemented in ISO-C11
|
||||
* and has no external dependencies. Furthermore, tree traversal, memory
|
||||
* allocations, and key comparisons are completely controlled by the API user.
|
||||
* The implementation only provides the RB-Tree specific rebalancing and
|
||||
* coloring.
|
||||
*
|
||||
* A tree is represented by the "CRBTree" structure. It contains a *single*
|
||||
* field, which is a pointer to the root node. If NULL, the tree is empty. If
|
||||
* non-NULL, there is at least a single element in the tree.
|
||||
*
|
||||
* Each node of the tree is represented by the "CRBNode" structure. It has
|
||||
* three fields. The @left and @right members can be accessed by the API user
|
||||
* directly to traverse the tree. The third member is a combination of the
|
||||
* parent pointer and a set of flags.
|
||||
* API users are required to embed the CRBNode object into their own objects
|
||||
* and then use offsetof() (i.e., container_of() and friends) to turn CRBNode
|
||||
* pointers into pointers to their own structure.
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdalign.h>
|
||||
#include <stddef.h>
|
||||
|
||||
typedef struct CRBNode CRBNode;
|
||||
typedef struct CRBTree CRBTree;
|
||||
|
||||
/* implementation detail */
|
||||
#define C_RBNODE_RED (0x1UL)
|
||||
#define C_RBNODE_ROOT (0x2UL)
|
||||
#define C_RBNODE_FLAG_MASK (0x3UL)
|
||||
|
||||
/**
|
||||
* struct CRBNode - Node of a Red-Black Tree
|
||||
* @__parent_and_flags: internal state
|
||||
* @left: left child, or NULL
|
||||
* @right: right child, or NULL
|
||||
*
|
||||
* Each node in an RB-Tree must embed a CRBNode object. This object contains
|
||||
* pointers to its left and right child, which can be freely accessed by the
|
||||
* API user at any time. They are NULL, if the node does not have a left/right
|
||||
* child.
|
||||
*
|
||||
* The @__parent_and_flags field must never be accessed directly. It encodes
|
||||
* the pointer to the parent node, and the color of the node. Use the accessor
|
||||
* functions instead.
|
||||
*
|
||||
* There is no reason to initialize a CRBNode object before linking it.
|
||||
* However, if you need a boolean state that tells you whether the node is
|
||||
* linked or not, you should initialize the node via c_rbnode_init() or
|
||||
* C_RBNODE_INIT.
|
||||
*/
|
||||
struct CRBNode {
|
||||
union {
|
||||
unsigned long __parent_and_flags;
|
||||
/* enforce >=4-byte alignment for @__parent_and_flags */
|
||||
alignas(4) unsigned char __align_dummy;
|
||||
};
|
||||
CRBNode *left;
|
||||
CRBNode *right;
|
||||
};
|
||||
|
||||
#define C_RBNODE_INIT(_var) { .__parent_and_flags = (unsigned long)&(_var) }
|
||||
|
||||
CRBNode *c_rbnode_leftmost(CRBNode *n);
|
||||
CRBNode *c_rbnode_rightmost(CRBNode *n);
|
||||
CRBNode *c_rbnode_leftdeepest(CRBNode *n);
|
||||
CRBNode *c_rbnode_rightdeepest(CRBNode *n);
|
||||
CRBNode *c_rbnode_next(CRBNode *n);
|
||||
CRBNode *c_rbnode_prev(CRBNode *n);
|
||||
CRBNode *c_rbnode_next_postorder(CRBNode *n);
|
||||
CRBNode *c_rbnode_prev_postorder(CRBNode *n);
|
||||
|
||||
void c_rbnode_link(CRBNode *p, CRBNode **l, CRBNode *n);
|
||||
void c_rbnode_unlink_stale(CRBNode *n);
|
||||
|
||||
/**
|
||||
* struct CRBTree - Red-Black Tree
|
||||
* @root: pointer to the root node, or NULL
|
||||
*
|
||||
* Each Red-Black Tree is rooted in an CRBTree object. This object contains a
|
||||
* pointer to the root node of the tree. The API user is free to access the
|
||||
* @root member at any time, and use it to traverse the tree.
|
||||
*
|
||||
* To initialize an RB-Tree, set it to NULL / all zero.
|
||||
*/
|
||||
struct CRBTree {
|
||||
union {
|
||||
CRBNode *root;
|
||||
/* enforce >=4-byte alignment for @root */
|
||||
alignas(4) unsigned char __align_dummy;
|
||||
};
|
||||
};
|
||||
|
||||
#define C_RBTREE_INIT {}
|
||||
|
||||
CRBNode *c_rbtree_first(CRBTree *t);
|
||||
CRBNode *c_rbtree_last(CRBTree *t);
|
||||
CRBNode *c_rbtree_first_postorder(CRBTree *t);
|
||||
CRBNode *c_rbtree_last_postorder(CRBTree *t);
|
||||
|
||||
void c_rbtree_move(CRBTree *to, CRBTree *from);
|
||||
void c_rbtree_add(CRBTree *t, CRBNode *p, CRBNode **l, CRBNode *n);
|
||||
|
||||
/**
|
||||
* c_rbnode_init() - mark a node as unlinked
|
||||
* @n: node to operate on
|
||||
*
|
||||
* This marks the node @n as unlinked. The node will be set to a valid state
|
||||
* that can never happen if the node is linked in a tree. Furthermore, this
|
||||
* state is fully known to the implementation, and as such handled gracefully
|
||||
* in all cases.
|
||||
*
|
||||
* You are *NOT* required to call this on your node. c_rbtree_add() can handle
|
||||
* uninitialized nodes just fine. However, calling this allows to use
|
||||
* c_rbnode_is_linked() to check for the state of a node. Furthermore,
|
||||
* iterators and accessors can be called on initialized (yet unlinked) nodes.
|
||||
*
|
||||
* Use the C_RBNODE_INIT macro if you want to initialize static variables.
|
||||
*/
|
||||
static inline void c_rbnode_init(CRBNode *n) {
|
||||
*n = (CRBNode)C_RBNODE_INIT(*n);
|
||||
}
|
||||
|
||||
/**
|
||||
* c_rbnode_entry() - get parent container of tree node
|
||||
* @_what: tree node, or NULL
|
||||
* @_t: type of parent container
|
||||
* @_m: member name of tree node in @_t
|
||||
*
|
||||
* If the tree node @_what is embedded into a surrounding structure, this will
|
||||
* turn the tree node pointer @_what into a pointer to the parent container
|
||||
* (using offsetof(3), or sometimes called container_of(3)).
|
||||
*
|
||||
* If @_what is NULL, this will also return NULL.
|
||||
*
|
||||
* Return: Pointer to parent container, or NULL.
|
||||
*/
|
||||
#define c_rbnode_entry(_what, _t, _m) \
|
||||
((_t *)(void *)(((unsigned long)(void *)(_what) ?: \
|
||||
offsetof(_t, _m)) - offsetof(_t, _m)))
|
||||
|
||||
/**
|
||||
* c_rbnode_parent() - return parent pointer
|
||||
* @n node to access
|
||||
*
|
||||
* This returns a pointer to the parent of the given node @n. If @n does not
|
||||
* have a parent, NULL is returned. If @n is not linked, @n itself is returned.
|
||||
*
|
||||
* You should not call this on unlinked or uninitialized nodes! If you do, you
|
||||
* better know its semantics.
|
||||
*
|
||||
* Return: Pointer to parent.
|
||||
*/
|
||||
static inline CRBNode *c_rbnode_parent(CRBNode *n) {
|
||||
return (n->__parent_and_flags & C_RBNODE_ROOT) ?
|
||||
NULL :
|
||||
(void *)(n->__parent_and_flags & ~C_RBNODE_FLAG_MASK);
|
||||
}
|
||||
|
||||
/**
|
||||
* c_rbnode_is_linked() - check whether a node is linked
|
||||
* @n: node to check, or NULL
|
||||
*
|
||||
* This checks whether the passed node is linked. If you pass NULL, or if the
|
||||
* node is not linked into a tree, this will return false. Otherwise, this
|
||||
* returns true.
|
||||
*
|
||||
* Note that you must have either linked the node or initialized it, before
|
||||
* calling this function. Never call this function on uninitialized nodes.
|
||||
* Furthermore, removing a node via c_rbnode_unlink_stale() does *NOT* mark the
|
||||
* node as unlinked. You have to call c_rbnode_init() yourself after removal, or
|
||||
* use the c_rbnode_unlink() helper.
|
||||
*
|
||||
* Return: true if the node is linked, false if not.
|
||||
*/
|
||||
static inline _Bool c_rbnode_is_linked(CRBNode *n) {
|
||||
return n && c_rbnode_parent(n) != n;
|
||||
}
|
||||
|
||||
/**
|
||||
* c_rbnode_unlink() - safely remove node from tree and reinitialize it
|
||||
* @n: node to remove, or NULL
|
||||
*
|
||||
* This is almost the same as c_rbnode_unlink_stale(), but extends it slightly, to be
|
||||
* more convenient to use in many cases:
|
||||
* - if @n is unlinked or NULL, this is a no-op
|
||||
* - @n is reinitialized after being removed
|
||||
*/
|
||||
static inline void c_rbnode_unlink(CRBNode *n) {
|
||||
if (c_rbnode_is_linked(n)) {
|
||||
c_rbnode_unlink_stale(n);
|
||||
c_rbnode_init(n);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* c_rbtree_init() - initialize a new RB-Tree
|
||||
* @t: tree to operate on
|
||||
*
|
||||
* This initializes a new, empty RB-Tree. An RB-Tree must be initialized before
|
||||
* any other functions are called on it. Alternatively, you can zero its memory
|
||||
* or assign C_RBTREE_INIT.
|
||||
*/
|
||||
static inline void c_rbtree_init(CRBTree *t) {
|
||||
*t = (CRBTree)C_RBTREE_INIT;
|
||||
}
|
||||
|
||||
/**
|
||||
* c_rbtree_is_empty() - check whether an RB-tree is empty
|
||||
* @t: tree to operate on
|
||||
*
|
||||
* This checks whether the passed RB-Tree is empty.
|
||||
*
|
||||
* Return: True if tree is empty, false otherwise.
|
||||
*/
|
||||
static inline _Bool c_rbtree_is_empty(CRBTree *t) {
|
||||
return !t->root;
|
||||
}
|
||||
|
||||
/**
|
||||
* CRBCompareFunc - compare a node to a key
|
||||
* @t: tree where the node is linked to
|
||||
* @k: key to compare
|
||||
* @n: node to compare
|
||||
*
|
||||
* If you use the tree-traversal helpers (which are optional), you need to
|
||||
* provide this callback so they can compare nodes in a tree to the key you
|
||||
* look for.
|
||||
*
|
||||
* The tree @t is provided as optional context to this callback. The key you
|
||||
* look for is provided as @k, the current node that should be compared to is
|
||||
* provided as @n. This function should work like strcmp(), that is, return <0
|
||||
* if @key orders before @n, 0 if both compare equal, and >0 if it orders after
|
||||
* @n.
|
||||
*/
|
||||
typedef int (*CRBCompareFunc) (CRBTree *t, void *k, CRBNode *n);
|
||||
|
||||
/**
|
||||
* c_rbtree_find_node() - find node
|
||||
* @t: tree to search through
|
||||
* @f: comparison function
|
||||
* @k: key to search for
|
||||
*
|
||||
* This searches through @t for a node that compares equal to @k. The function
|
||||
* @f must be provided by the caller, which is used to compare nodes to @k. See
|
||||
* the documentation of CRBCompareFunc for details.
|
||||
*
|
||||
* If there are multiple entries that compare equal to @k, this will return a
|
||||
* pseudo-randomly picked node. If you need stable lookup functions for trees
|
||||
* where duplicate entries are allowed, you better code your own lookup.
|
||||
*
|
||||
* Return: Pointer to matching node, or NULL.
|
||||
*/
|
||||
static inline CRBNode *c_rbtree_find_node(CRBTree *t, CRBCompareFunc f, const void *k) {
|
||||
CRBNode *i;
|
||||
|
||||
assert(t);
|
||||
assert(f);
|
||||
|
||||
i = t->root;
|
||||
while (i) {
|
||||
int v = f(t, (void *)k, i);
|
||||
if (v < 0)
|
||||
i = i->left;
|
||||
else if (v > 0)
|
||||
i = i->right;
|
||||
else
|
||||
return i;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* c_rbtree_find_entry() - find entry
|
||||
* @_t: tree to search through
|
||||
* @_f: comparison function
|
||||
* @_k: key to search for
|
||||
* @_s: type of the structure that embeds the nodes
|
||||
* @_m: name of the node-member in type @_t
|
||||
*
|
||||
* This is very similar to c_rbtree_find_node(), but instead of returning a
|
||||
* pointer to the CRBNode, it returns a pointer to the surrounding object. This
|
||||
* object must embed the CRBNode object. The type of the surrounding object
|
||||
* must be given as @_s, and the name of the embedded CRBNode member as @_m.
|
||||
*
|
||||
* See c_rbtree_find_node() and c_rbnode_entry() for more details.
|
||||
*
|
||||
* Return: Pointer to found entry, NULL if not found.
|
||||
*/
|
||||
#define c_rbtree_find_entry(_t, _f, _k, _s, _m) \
|
||||
c_rbnode_entry(c_rbtree_find_node((_t), (_f), (_k)), _s, _m)
|
||||
|
||||
/**
|
||||
* c_rbtree_find_slot() - find slot to insert new node
|
||||
* @t: tree to search through
|
||||
* @f: comparison function
|
||||
* @k: key to search for
|
||||
* @p: output storage for parent pointer
|
||||
*
|
||||
* This searches through @t just like c_rbtree_find_node() does. However,
|
||||
* instead of returning a pointer to a node that compares equal to @k, this
|
||||
* searches for a slot to insert a node with key @k. A pointer to the slot is
|
||||
* returned, and a pointer to the parent of the slot is stored in @p. Both
|
||||
* can be passed directly to c_rbtree_add(), together with your node to insert.
|
||||
*
|
||||
* If there already is a node in the tree, that compares equal to @k, this will
|
||||
* return NULL and store the conflicting node in @p. In all other cases,
|
||||
* this will return a pointer (non-NULL) to the empty slot to insert the node
|
||||
* at. @p will point to the parent node of that slot.
|
||||
*
|
||||
* If you want trees that allow duplicate nodes, you better code your own
|
||||
* insertion function.
|
||||
*
|
||||
* Return: Pointer to slot to insert node, or NULL on conflicts.
|
||||
*/
|
||||
static inline CRBNode **c_rbtree_find_slot(CRBTree *t, CRBCompareFunc f, const void *k, CRBNode **p) {
|
||||
CRBNode **i;
|
||||
|
||||
assert(t);
|
||||
assert(f);
|
||||
assert(p);
|
||||
|
||||
i = &t->root;
|
||||
*p = NULL;
|
||||
while (*i) {
|
||||
int v = f(t, (void *)k, *i);
|
||||
*p = *i;
|
||||
if (v < 0)
|
||||
i = &(*i)->left;
|
||||
else if (v > 0)
|
||||
i = &(*i)->right;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
/**
|
||||
* c_rbtree_for_each*() - iterators
|
||||
*
|
||||
* The c_rbtree_for_each*() macros provide simple for-loop wrappers to iterate
|
||||
* an RB-Tree. They come in a set of flavours:
|
||||
*
|
||||
* - "entry": This combines c_rbnode_entry() with the loop iterator, so the
|
||||
* iterator always has the type of the surrounding object, rather
|
||||
* than CRBNode.
|
||||
*
|
||||
* - "safe": The loop iterator always keeps track of the next element to
|
||||
* visit. This means, you can safely modify the current element,
|
||||
* while retaining loop-integrity.
|
||||
* You still must not touch any other entry of the tree. Otherwise,
|
||||
* the loop-iterator will be corrupted. Also remember to only
|
||||
* modify the tree in a way compatible with your iterator-order.
|
||||
* That is, if you use in-order iteration (default), you can unlink
|
||||
* your current object, including re-balancing the tree. However,
|
||||
* if you use post-order, you must not trigger a tree rebalance
|
||||
* operation, since it is not an invariant of post-order iteration.
|
||||
*
|
||||
* - "postorder": Rather than the default in-order iteration, this iterates
|
||||
* the tree in post-order.
|
||||
*
|
||||
* - "unlink": This unlinks the current element from the tree before the loop
|
||||
* code is run. Note that the tree is not rebalanced. That is,
|
||||
* you must never break out of the loop. If you do so, the tree
|
||||
* is corrupted.
|
||||
*/
|
||||
|
||||
#define c_rbtree_for_each(_iter, _tree) \
|
||||
for (_iter = c_rbtree_first(_tree); \
|
||||
_iter; \
|
||||
_iter = c_rbnode_next(_iter))
|
||||
|
||||
#define c_rbtree_for_each_entry(_iter, _tree, _m) \
|
||||
for (_iter = c_rbnode_entry(c_rbtree_first(_tree), __typeof__(*_iter), _m); \
|
||||
_iter; \
|
||||
_iter = c_rbnode_entry(c_rbnode_next(&_iter->_m), __typeof__(*_iter), _m))
|
||||
|
||||
#define c_rbtree_for_each_safe(_iter, _safe, _tree) \
|
||||
for (_iter = c_rbtree_first(_tree), _safe = c_rbnode_next(_iter); \
|
||||
_iter; \
|
||||
_iter = _safe, _safe = c_rbnode_next(_safe))
|
||||
|
||||
#define c_rbtree_for_each_entry_safe(_iter, _safe, _tree, _m) \
|
||||
for (_iter = c_rbnode_entry(c_rbtree_first(_tree), __typeof__(*_iter), _m), \
|
||||
_safe = _iter ? c_rbnode_entry(c_rbnode_next(&_iter->_m), __typeof__(*_iter), _m) : NULL; \
|
||||
_iter; \
|
||||
_iter = _safe, \
|
||||
_safe = _safe ? c_rbnode_entry(c_rbnode_next(&_safe->_m), __typeof__(*_iter), _m) : NULL)
|
||||
|
||||
#define c_rbtree_for_each_postorder(_iter, _tree) \
|
||||
for (_iter = c_rbtree_first_postorder(_tree); \
|
||||
_iter; \
|
||||
_iter = c_rbnode_next_postorder(_iter)) \
|
||||
|
||||
#define c_rbtree_for_each_entry_postorder(_iter, _tree, _m) \
|
||||
for (_iter = c_rbnode_entry(c_rbtree_first_postorder(_tree), __typeof__(*_iter), _m); \
|
||||
_iter; \
|
||||
_iter = c_rbnode_entry(c_rbnode_next_postorder(&_iter->_m), __typeof__(*_iter), _m))
|
||||
|
||||
#define c_rbtree_for_each_safe_postorder(_iter, _safe, _tree) \
|
||||
for (_iter = c_rbtree_first_postorder(_tree), _safe = c_rbnode_next_postorder(_iter); \
|
||||
_iter; \
|
||||
_iter = _safe, _safe = c_rbnode_next_postorder(_safe))
|
||||
|
||||
#define c_rbtree_for_each_entry_safe_postorder(_iter, _safe, _tree, _m) \
|
||||
for (_iter = c_rbnode_entry(c_rbtree_first_postorder(_tree), __typeof__(*_iter), _m), \
|
||||
_safe = _iter ? c_rbnode_entry(c_rbnode_next_postorder(&_iter->_m), __typeof__(*_iter), _m) : NULL; \
|
||||
_iter; \
|
||||
_iter = _safe, \
|
||||
_safe = _safe ? c_rbnode_entry(c_rbnode_next_postorder(&_safe->_m), __typeof__(*_iter), _m) : NULL)
|
||||
|
||||
#define c_rbtree_for_each_safe_postorder_unlink(_iter, _safe, _tree) \
|
||||
for (_iter = c_rbtree_first_postorder(_tree), _safe = c_rbnode_next_postorder(_iter); \
|
||||
_iter ? ((*_iter = (CRBNode)C_RBNODE_INIT(*_iter)), 1) : (((_tree)->root = NULL), 0); \
|
||||
_iter = _safe, _safe = c_rbnode_next_postorder(_safe)) \
|
||||
|
||||
#define c_rbtree_for_each_entry_safe_postorder_unlink(_iter, _safe, _tree, _m) \
|
||||
for (_iter = c_rbnode_entry(c_rbtree_first_postorder(_tree), __typeof__(*_iter), _m), \
|
||||
_safe = _iter ? c_rbnode_entry(c_rbnode_next_postorder(&_iter->_m), __typeof__(*_iter), _m) : NULL; \
|
||||
_iter ? ((_iter->_m = (CRBNode)C_RBNODE_INIT(_iter->_m)), 1) : (((_tree)->root = NULL), 0); \
|
||||
_iter = _safe, \
|
||||
_safe = _safe ? c_rbnode_entry(c_rbnode_next_postorder(&_safe->_m), __typeof__(*_iter), _m) : NULL)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
21
src/libcrbtree.sym
Normal file
21
src/libcrbtree.sym
Normal file
|
|
@ -0,0 +1,21 @@
|
|||
LIBCRBTREE_3 {
|
||||
global:
|
||||
c_rbnode_leftmost;
|
||||
c_rbnode_rightmost;
|
||||
c_rbnode_leftdeepest;
|
||||
c_rbnode_rightdeepest;
|
||||
c_rbnode_next;
|
||||
c_rbnode_prev;
|
||||
c_rbnode_next_postorder;
|
||||
c_rbnode_prev_postorder;
|
||||
c_rbnode_link;
|
||||
c_rbnode_unlink_stale;
|
||||
c_rbtree_first;
|
||||
c_rbtree_last;
|
||||
c_rbtree_first_postorder;
|
||||
c_rbtree_last_postorder;
|
||||
c_rbtree_add;
|
||||
c_rbtree_move;
|
||||
local:
|
||||
*;
|
||||
};
|
||||
76
src/meson.build
Normal file
76
src/meson.build
Normal file
|
|
@ -0,0 +1,76 @@
|
|||
#
|
||||
# target: libcrbtree.so
|
||||
#
|
||||
|
||||
libcrbtree_symfile = join_paths(meson.current_source_dir(), 'libcrbtree.sym')
|
||||
|
||||
libcrbtree_deps = [
|
||||
dep_cstdaux,
|
||||
]
|
||||
|
||||
libcrbtree_private = static_library(
|
||||
'crbtree-private',
|
||||
[
|
||||
'c-rbtree.c',
|
||||
],
|
||||
c_args: [
|
||||
'-fvisibility=hidden',
|
||||
'-fno-common',
|
||||
],
|
||||
dependencies: libcrbtree_deps,
|
||||
pic: true,
|
||||
)
|
||||
|
||||
libcrbtree_shared = shared_library(
|
||||
'crbtree',
|
||||
objects: libcrbtree_private.extract_all_objects(),
|
||||
dependencies: libcrbtree_deps,
|
||||
install: not meson.is_subproject(),
|
||||
soversion: 0,
|
||||
link_depends: libcrbtree_symfile,
|
||||
link_args: [
|
||||
'-Wl,--no-undefined',
|
||||
'-Wl,--version-script=@0@'.format(libcrbtree_symfile),
|
||||
],
|
||||
)
|
||||
|
||||
libcrbtree_dep = declare_dependency(
|
||||
include_directories: include_directories('.'),
|
||||
link_with: libcrbtree_private,
|
||||
dependencies: libcrbtree_deps,
|
||||
version: meson.project_version(),
|
||||
)
|
||||
|
||||
if not meson.is_subproject()
|
||||
install_headers('c-rbtree.h')
|
||||
|
||||
mod_pkgconfig.generate(
|
||||
libraries: libcrbtree_shared,
|
||||
version: meson.project_version(),
|
||||
name: 'libcrbtree',
|
||||
filebase: 'libcrbtree',
|
||||
description: project_description,
|
||||
)
|
||||
endif
|
||||
|
||||
#
|
||||
# target: test-*
|
||||
#
|
||||
|
||||
test_api = executable('test-api', ['test-api.c'], link_with: libcrbtree_shared)
|
||||
test('API Symbol Visibility', test_api)
|
||||
|
||||
test_basic = executable('test-basic', ['test-basic.c'], dependencies: libcrbtree_dep)
|
||||
test('Basic API Behavior', test_basic)
|
||||
|
||||
test_map = executable('test-map', ['test-map.c'], dependencies: libcrbtree_dep)
|
||||
test('Generic Map', test_map)
|
||||
|
||||
test_misc = executable('test-misc', ['test-misc.c'], dependencies: libcrbtree_dep)
|
||||
test('Miscellaneous', test_misc)
|
||||
|
||||
test_parallel = executable('test-parallel', ['test-parallel.c'], dependencies: libcrbtree_dep)
|
||||
test('Lockless Parallel Readers', test_parallel)
|
||||
|
||||
test_posix = executable('test-posix', ['test-posix.c'], dependencies: libcrbtree_dep)
|
||||
test('Posix tsearch(3p) Comparison', test_posix)
|
||||
107
src/test-api.c
Normal file
107
src/test-api.c
Normal file
|
|
@ -0,0 +1,107 @@
|
|||
/*
|
||||
* Tests for Public API
|
||||
* This test, unlikely the others, is linked against the real, distributed,
|
||||
* shared library. Its sole purpose is to test for symbol availability.
|
||||
*/
|
||||
|
||||
#undef NDEBUG
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "c-rbtree.h"
|
||||
|
||||
typedef struct TestNode {
|
||||
CRBNode rb;
|
||||
} TestNode;
|
||||
|
||||
static void test_api(void) {
|
||||
CRBTree t = C_RBTREE_INIT, t2 = C_RBTREE_INIT;
|
||||
CRBNode *i, *is, n = C_RBNODE_INIT(n), m = C_RBNODE_INIT(m);
|
||||
TestNode *ie, *ies;
|
||||
|
||||
assert(c_rbtree_is_empty(&t));
|
||||
assert(!c_rbnode_is_linked(&n));
|
||||
assert(!c_rbnode_entry(NULL, TestNode, rb));
|
||||
|
||||
/* init, is_linked, add, link, {unlink{,_stale}} */
|
||||
|
||||
c_rbtree_add(&t, NULL, &t.root, &n);
|
||||
assert(c_rbnode_is_linked(&n));
|
||||
|
||||
c_rbnode_link(&n, &n.left, &m);
|
||||
assert(c_rbnode_is_linked(&m));
|
||||
|
||||
c_rbnode_unlink(&m);
|
||||
assert(!c_rbnode_is_linked(&m));
|
||||
|
||||
c_rbtree_add(&t, NULL, &t.root, &n);
|
||||
assert(c_rbnode_is_linked(&n));
|
||||
|
||||
c_rbnode_link(&n, &n.left, &m);
|
||||
assert(c_rbnode_is_linked(&m));
|
||||
|
||||
c_rbnode_unlink_stale(&m);
|
||||
assert(c_rbnode_is_linked(&m)); /* @m wasn't touched */
|
||||
|
||||
c_rbnode_init(&n);
|
||||
assert(!c_rbnode_is_linked(&n));
|
||||
|
||||
c_rbnode_init(&m);
|
||||
assert(!c_rbnode_is_linked(&m));
|
||||
|
||||
c_rbtree_init(&t);
|
||||
assert(c_rbtree_is_empty(&t));
|
||||
|
||||
/* move */
|
||||
|
||||
c_rbtree_move(&t2, &t);
|
||||
|
||||
/* first, last, leftmost, rightmost, next, prev */
|
||||
|
||||
assert(!c_rbtree_first(&t));
|
||||
assert(!c_rbtree_last(&t));
|
||||
assert(&n == c_rbnode_leftmost(&n));
|
||||
assert(&n == c_rbnode_rightmost(&n));
|
||||
assert(!c_rbnode_next(&n));
|
||||
assert(!c_rbnode_prev(&n));
|
||||
|
||||
/* postorder traversal */
|
||||
|
||||
assert(!c_rbtree_first_postorder(&t));
|
||||
assert(!c_rbtree_last_postorder(&t));
|
||||
assert(&n == c_rbnode_leftdeepest(&n));
|
||||
assert(&n == c_rbnode_rightdeepest(&n));
|
||||
assert(!c_rbnode_next_postorder(&n));
|
||||
assert(!c_rbnode_prev_postorder(&n));
|
||||
|
||||
/* iterators */
|
||||
|
||||
c_rbtree_for_each(i, &t)
|
||||
assert(!i);
|
||||
c_rbtree_for_each_safe(i, is, &t)
|
||||
assert(!i);
|
||||
c_rbtree_for_each_entry(ie, &t, rb)
|
||||
assert(!ie);
|
||||
c_rbtree_for_each_entry_safe(ie, ies, &t, rb)
|
||||
assert(!ie);
|
||||
|
||||
c_rbtree_for_each_postorder(i, &t)
|
||||
assert(!i);
|
||||
c_rbtree_for_each_safe_postorder(i, is, &t)
|
||||
assert(!i);
|
||||
c_rbtree_for_each_entry_postorder(ie, &t, rb)
|
||||
assert(!ie);
|
||||
c_rbtree_for_each_entry_safe_postorder(ie, ies, &t, rb)
|
||||
assert(!ie);
|
||||
|
||||
c_rbtree_for_each_safe_postorder_unlink(i, is, &t)
|
||||
assert(!i);
|
||||
c_rbtree_for_each_entry_safe_postorder_unlink(ie, ies, &t, rb)
|
||||
assert(!ie);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
test_api();
|
||||
return 0;
|
||||
}
|
||||
239
src/test-basic.c
Normal file
239
src/test-basic.c
Normal file
|
|
@ -0,0 +1,239 @@
|
|||
/*
|
||||
* Tests for Basic Tree Operations
|
||||
* This test does some basic tree operations and verifies their correctness. It
|
||||
* validates the RB-Tree invariants after each operation, to guarantee the
|
||||
* stability of the tree.
|
||||
*
|
||||
* For testing purposes, we use the memory address of a node as its key, and
|
||||
* order nodes in ascending order.
|
||||
*/
|
||||
|
||||
#undef NDEBUG
|
||||
#include <assert.h>
|
||||
#include <c-stdaux.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include "c-rbtree.h"
|
||||
#include "c-rbtree-private.h"
|
||||
|
||||
static size_t validate(CRBTree *t) {
|
||||
unsigned int i_black, n_black;
|
||||
CRBNode *n, *p, *o;
|
||||
size_t count = 0;
|
||||
|
||||
c_assert(t);
|
||||
c_assert(!t->root || c_rbnode_is_black(t->root));
|
||||
|
||||
/* traverse to left-most child, count black nodes */
|
||||
i_black = 0;
|
||||
n = t->root;
|
||||
while (n && n->left) {
|
||||
if (c_rbnode_is_black(n))
|
||||
++i_black;
|
||||
n = n->left;
|
||||
}
|
||||
n_black = i_black;
|
||||
|
||||
/*
|
||||
* Traverse tree and verify correctness:
|
||||
* 1) A node is either red or black
|
||||
* 2) The root is black
|
||||
* 3) All leaves are black
|
||||
* 4) Every red node must have two black child nodes
|
||||
* 5) Every path to a leaf contains the same number of black nodes
|
||||
*
|
||||
* Note that NULL nodes are considered black, which is why we don't
|
||||
* check for 3).
|
||||
*/
|
||||
o = NULL;
|
||||
while (n) {
|
||||
++count;
|
||||
|
||||
/* verify natural order */
|
||||
c_assert(n > o);
|
||||
o = n;
|
||||
|
||||
/* verify consistency */
|
||||
c_assert(!n->right || c_rbnode_parent(n->right) == n);
|
||||
c_assert(!n->left || c_rbnode_parent(n->left) == n);
|
||||
|
||||
/* verify 2) */
|
||||
if (!c_rbnode_parent(n))
|
||||
c_assert(c_rbnode_is_black(n));
|
||||
|
||||
if (c_rbnode_is_red(n)) {
|
||||
/* verify 4) */
|
||||
c_assert(!n->left || c_rbnode_is_black(n->left));
|
||||
c_assert(!n->right || c_rbnode_is_black(n->right));
|
||||
} else {
|
||||
/* verify 1) */
|
||||
c_assert(c_rbnode_is_black(n));
|
||||
}
|
||||
|
||||
/* verify 5) */
|
||||
if (!n->left && !n->right)
|
||||
c_assert(i_black == n_black);
|
||||
|
||||
/* get next node */
|
||||
if (n->right) {
|
||||
n = n->right;
|
||||
if (c_rbnode_is_black(n))
|
||||
++i_black;
|
||||
|
||||
while (n->left) {
|
||||
n = n->left;
|
||||
if (c_rbnode_is_black(n))
|
||||
++i_black;
|
||||
}
|
||||
} else {
|
||||
while ((p = c_rbnode_parent(n)) && n == p->right) {
|
||||
n = p;
|
||||
if (c_rbnode_is_black(p->right))
|
||||
--i_black;
|
||||
}
|
||||
|
||||
n = p;
|
||||
if (p && c_rbnode_is_black(p->left))
|
||||
--i_black;
|
||||
}
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static void insert(CRBTree *t, CRBNode *n) {
|
||||
CRBNode **i, *p;
|
||||
|
||||
c_assert(t);
|
||||
c_assert(n);
|
||||
c_assert(!c_rbnode_is_linked(n));
|
||||
|
||||
i = &t->root;
|
||||
p = NULL;
|
||||
while (*i) {
|
||||
p = *i;
|
||||
if (n < *i) {
|
||||
i = &(*i)->left;
|
||||
} else {
|
||||
c_assert(n > *i);
|
||||
i = &(*i)->right;
|
||||
}
|
||||
}
|
||||
|
||||
c_rbtree_add(t, p, i, n);
|
||||
}
|
||||
|
||||
static void shuffle(CRBNode **nodes, size_t n_memb) {
|
||||
unsigned int i, j;
|
||||
CRBNode *t;
|
||||
|
||||
for (i = 0; i < n_memb; ++i) {
|
||||
j = rand() % n_memb;
|
||||
t = nodes[j];
|
||||
nodes[j] = nodes[i];
|
||||
nodes[i] = t;
|
||||
}
|
||||
}
|
||||
|
||||
static void test_shuffle(void) {
|
||||
CRBNode *nodes[512];
|
||||
CRBTree t = {};
|
||||
unsigned int i, j;
|
||||
size_t n;
|
||||
|
||||
/* allocate and initialize all nodes */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
nodes[i] = malloc(sizeof(*nodes[i]));
|
||||
c_assert(nodes[i]);
|
||||
c_rbnode_init(nodes[i]);
|
||||
}
|
||||
|
||||
/* shuffle nodes and validate *empty* tree */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
n = validate(&t);
|
||||
c_assert(n == 0);
|
||||
|
||||
/* add all nodes and validate after each insertion */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
insert(&t, nodes[i]);
|
||||
n = validate(&t);
|
||||
c_assert(n == i + 1);
|
||||
}
|
||||
|
||||
/* shuffle nodes again */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* remove all nodes (in different order) and validate on each round */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
c_rbnode_unlink(nodes[i]);
|
||||
n = validate(&t);
|
||||
c_assert(n == sizeof(nodes) / sizeof(*nodes) - i - 1);
|
||||
}
|
||||
|
||||
/* shuffle nodes and validate *empty* tree again */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
n = validate(&t);
|
||||
c_assert(n == 0);
|
||||
|
||||
/* add all nodes again */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
insert(&t, nodes[i]);
|
||||
n = validate(&t);
|
||||
c_assert(n == i + 1);
|
||||
}
|
||||
|
||||
/* 4 times, remove half of the nodes and add them again */
|
||||
for (j = 0; j < 4; ++j) {
|
||||
/* shuffle nodes again */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* remove half of the nodes */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes) / 2; ++i) {
|
||||
c_rbnode_unlink(nodes[i]);
|
||||
n = validate(&t);
|
||||
c_assert(n == sizeof(nodes) / sizeof(*nodes) - i - 1);
|
||||
}
|
||||
|
||||
/* shuffle the removed half */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes) / 2);
|
||||
|
||||
/* add the removed half again */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes) / 2; ++i) {
|
||||
insert(&t, nodes[i]);
|
||||
n = validate(&t);
|
||||
c_assert(n == sizeof(nodes) / sizeof(*nodes) / 2 + i + 1);
|
||||
}
|
||||
}
|
||||
|
||||
/* shuffle nodes again */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* remove all */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
c_rbnode_unlink(nodes[i]);
|
||||
n = validate(&t);
|
||||
c_assert(n == sizeof(nodes) / sizeof(*nodes) - i - 1);
|
||||
}
|
||||
|
||||
/* free nodes again */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i)
|
||||
free(nodes[i]);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
unsigned int i;
|
||||
|
||||
/* we want stable tests, so use fixed seed */
|
||||
srand(0xdeadbeef);
|
||||
|
||||
/*
|
||||
* The tests are pseudo random; run them multiple times, each run will
|
||||
* have different orders and thus different results.
|
||||
*/
|
||||
for (i = 0; i < 4; ++i)
|
||||
test_shuffle();
|
||||
|
||||
return 0;
|
||||
}
|
||||
277
src/test-map.c
Normal file
277
src/test-map.c
Normal file
|
|
@ -0,0 +1,277 @@
|
|||
/*
|
||||
* RB-Tree based Map
|
||||
* This implements a basic Map between integer keys and objects. It uses the
|
||||
* lookup and insertion helpers, rather than open-coding it.
|
||||
*/
|
||||
|
||||
#undef NDEBUG
|
||||
#include <assert.h>
|
||||
#include <c-stdaux.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include "c-rbtree.h"
|
||||
#include "c-rbtree-private.h"
|
||||
|
||||
typedef struct {
|
||||
unsigned long key;
|
||||
unsigned int marker;
|
||||
CRBNode rb;
|
||||
} Node;
|
||||
|
||||
#define node_from_rb(_rb) ((Node *)((char *)(_rb) - offsetof(Node, rb)))
|
||||
|
||||
static int test_compare(CRBTree *t, void *k, CRBNode *n) {
|
||||
unsigned long key = (unsigned long)k;
|
||||
Node *node = node_from_rb(n);
|
||||
|
||||
return (key < node->key) ? -1 : (key > node->key) ? 1 : 0;
|
||||
}
|
||||
|
||||
static void shuffle(Node **nodes, size_t n_memb) {
|
||||
unsigned int i, j;
|
||||
Node *t;
|
||||
|
||||
for (i = 0; i < n_memb; ++i) {
|
||||
j = rand() % n_memb;
|
||||
t = nodes[j];
|
||||
nodes[j] = nodes[i];
|
||||
nodes[i] = t;
|
||||
}
|
||||
}
|
||||
|
||||
static void test_map(void) {
|
||||
CRBNode **slot, *p, *safe_p;
|
||||
CRBTree t = {};
|
||||
Node *n, *safe_n, *nodes[2048];
|
||||
unsigned long i, v;
|
||||
|
||||
/* allocate and initialize all nodes */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
nodes[i] = malloc(sizeof(*nodes[i]));
|
||||
c_assert(nodes[i]);
|
||||
nodes[i]->key = i;
|
||||
nodes[i]->marker = 0;
|
||||
c_rbnode_init(&nodes[i]->rb);
|
||||
}
|
||||
|
||||
/* shuffle nodes */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* add all nodes, and verify that each node is linked */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
c_assert(!c_rbnode_is_linked(&nodes[i]->rb));
|
||||
c_assert(!c_rbtree_find_entry(&t, test_compare, (void *)nodes[i]->key, Node, rb));
|
||||
|
||||
slot = c_rbtree_find_slot(&t, test_compare, (void *)nodes[i]->key, &p);
|
||||
c_assert(slot);
|
||||
c_rbtree_add(&t, p, slot, &nodes[i]->rb);
|
||||
|
||||
c_assert(c_rbnode_is_linked(&nodes[i]->rb));
|
||||
c_assert(nodes[i] == c_rbtree_find_entry(&t, test_compare, (void *)nodes[i]->key, Node, rb));
|
||||
}
|
||||
|
||||
/* verify in-order traversal works */
|
||||
i = 0;
|
||||
v = 0;
|
||||
for (p = c_rbtree_first(&t); p; p = c_rbnode_next(p)) {
|
||||
++i;
|
||||
c_assert(!node_from_rb(p)->marker);
|
||||
node_from_rb(p)->marker = 1;
|
||||
|
||||
c_assert(v <= node_from_rb(p)->key);
|
||||
v = node_from_rb(p)->key;
|
||||
|
||||
c_assert(!c_rbnode_next(p) || p == c_rbnode_prev(c_rbnode_next(p)));
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* verify reverse in-order traversal works */
|
||||
i = 0;
|
||||
v = -1;
|
||||
for (p = c_rbtree_last(&t); p; p = c_rbnode_prev(p)) {
|
||||
++i;
|
||||
c_assert(node_from_rb(p)->marker);
|
||||
node_from_rb(p)->marker = 0;
|
||||
|
||||
c_assert(v >= node_from_rb(p)->key);
|
||||
v = node_from_rb(p)->key;
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* verify post-order traversal works */
|
||||
i = 0;
|
||||
for (p = c_rbtree_first_postorder(&t); p; p = c_rbnode_next_postorder(p)) {
|
||||
++i;
|
||||
c_assert(!node_from_rb(p)->marker);
|
||||
c_assert(!c_rbnode_parent(p) || !node_from_rb(c_rbnode_parent(p))->marker);
|
||||
c_assert(!p->left || node_from_rb(p->left)->marker);
|
||||
c_assert(!p->right || node_from_rb(p->right)->marker);
|
||||
node_from_rb(p)->marker = 1;
|
||||
|
||||
c_assert(!c_rbnode_next_postorder(p) || p == c_rbnode_prev_postorder(c_rbnode_next_postorder(p)));
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* verify pre-order (inverse post-order) traversal works */
|
||||
i = 0;
|
||||
for (p = c_rbtree_last_postorder(&t); p; p = c_rbnode_prev_postorder(p)) {
|
||||
++i;
|
||||
c_assert(node_from_rb(p)->marker);
|
||||
c_assert(!c_rbnode_parent(p) || !node_from_rb(c_rbnode_parent(p))->marker);
|
||||
c_assert(!p->left || node_from_rb(p->left)->marker);
|
||||
c_assert(!p->right || node_from_rb(p->right)->marker);
|
||||
node_from_rb(p)->marker = 0;
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* verify in-order traversal works via helper */
|
||||
i = 0;
|
||||
v = 0;
|
||||
c_rbtree_for_each(p, &t) {
|
||||
++i;
|
||||
c_assert(!node_from_rb(p)->marker);
|
||||
node_from_rb(p)->marker = 1;
|
||||
|
||||
c_assert(v <= node_from_rb(p)->key);
|
||||
v = node_from_rb(p)->key;
|
||||
|
||||
c_assert(!c_rbnode_next(p) || p == c_rbnode_prev(c_rbnode_next(p)));
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* verify in-order traversal works via entry-helper */
|
||||
i = 0;
|
||||
v = 0;
|
||||
c_rbtree_for_each_entry(n, &t, rb) {
|
||||
++i;
|
||||
c_assert(n->marker);
|
||||
n->marker = 0;
|
||||
|
||||
c_assert(v <= n->key);
|
||||
v = n->key;
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* verify post-order traversal works via helper */
|
||||
i = 0;
|
||||
c_rbtree_for_each_postorder(p, &t) {
|
||||
++i;
|
||||
c_assert(!node_from_rb(p)->marker);
|
||||
c_assert(!c_rbnode_parent(p) || !node_from_rb(c_rbnode_parent(p))->marker);
|
||||
c_assert(!p->left || node_from_rb(p->left)->marker);
|
||||
c_assert(!p->right || node_from_rb(p->right)->marker);
|
||||
node_from_rb(p)->marker = 1;
|
||||
|
||||
c_assert(!c_rbnode_next_postorder(p) || p == c_rbnode_prev_postorder(c_rbnode_next_postorder(p)));
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* verify post-order traversal works via entry-helper */
|
||||
i = 0;
|
||||
c_rbtree_for_each_entry_postorder(n, &t, rb) {
|
||||
++i;
|
||||
c_assert(n->marker);
|
||||
c_assert(!c_rbnode_parent(&n->rb) || node_from_rb(c_rbnode_parent(&n->rb))->marker);
|
||||
c_assert(!n->rb.left || !node_from_rb(n->rb.left)->marker);
|
||||
c_assert(!n->rb.right || !node_from_rb(n->rb.right)->marker);
|
||||
n->marker = 0;
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* shuffle nodes again */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* remove all nodes (in different order) */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
c_assert(c_rbnode_is_linked(&nodes[i]->rb));
|
||||
c_assert(nodes[i] == c_rbtree_find_entry(&t, test_compare, (void *)nodes[i]->key, Node, rb));
|
||||
|
||||
c_rbnode_unlink(&nodes[i]->rb);
|
||||
|
||||
c_assert(!c_rbnode_is_linked(&nodes[i]->rb));
|
||||
c_assert(!c_rbtree_find_entry(&t, test_compare, (void *)nodes[i]->key, Node, rb));
|
||||
}
|
||||
c_assert(c_rbtree_is_empty(&t));
|
||||
|
||||
/* add all nodes again */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
slot = c_rbtree_find_slot(&t, test_compare, (void *)nodes[i]->key, &p);
|
||||
c_assert(slot);
|
||||
c_rbtree_add(&t, p, slot, &nodes[i]->rb);
|
||||
}
|
||||
|
||||
/* remove all nodes via helper */
|
||||
i = 0;
|
||||
c_rbtree_for_each_safe(p, safe_p, &t) {
|
||||
++i;
|
||||
c_rbnode_unlink(p);
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
c_assert(c_rbtree_is_empty(&t));
|
||||
|
||||
/* add all nodes again */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
slot = c_rbtree_find_slot(&t, test_compare, (void *)nodes[i]->key, &p);
|
||||
c_assert(slot);
|
||||
c_rbtree_add(&t, p, slot, &nodes[i]->rb);
|
||||
}
|
||||
|
||||
/* remove all nodes via entry-helper */
|
||||
i = 0;
|
||||
c_rbtree_for_each_entry_safe(n, safe_n, &t, rb) {
|
||||
++i;
|
||||
c_rbnode_unlink(&n->rb);
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
c_assert(c_rbtree_is_empty(&t));
|
||||
|
||||
/* add all nodes again */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
slot = c_rbtree_find_slot(&t, test_compare, (void *)nodes[i]->key, &p);
|
||||
c_assert(slot);
|
||||
c_rbtree_add(&t, p, slot, &nodes[i]->rb);
|
||||
}
|
||||
|
||||
/* remove all nodes via unlink-helper */
|
||||
i = 0;
|
||||
c_rbtree_for_each_safe_postorder_unlink(p, safe_p, &t) {
|
||||
++i;
|
||||
c_assert(!c_rbnode_is_linked(p));
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
c_assert(c_rbtree_is_empty(&t));
|
||||
|
||||
/* add all nodes again */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
slot = c_rbtree_find_slot(&t, test_compare, (void *)nodes[i]->key, &p);
|
||||
c_assert(slot);
|
||||
c_rbtree_add(&t, p, slot, &nodes[i]->rb);
|
||||
}
|
||||
|
||||
/* remove all nodes via entry-unlink-helper */
|
||||
i = 0;
|
||||
c_rbtree_for_each_entry_safe_postorder_unlink(n, safe_n, &t, rb) {
|
||||
++i;
|
||||
c_assert(!c_rbnode_is_linked(&n->rb));
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
c_assert(c_rbtree_is_empty(&t));
|
||||
|
||||
/* free nodes again */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
c_assert(!nodes[i]->marker);
|
||||
free(nodes[i]);
|
||||
}
|
||||
|
||||
c_assert(c_rbtree_is_empty(&t));
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
/* we want stable tests, so use fixed seed */
|
||||
srand(0xdeadbeef);
|
||||
|
||||
test_map();
|
||||
return 0;
|
||||
}
|
||||
66
src/test-misc.c
Normal file
66
src/test-misc.c
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
/*
|
||||
* Tests for Miscellaneous Tree Operations
|
||||
* This test contains all of the minor tests that did not fit anywhere else.
|
||||
*/
|
||||
|
||||
#undef NDEBUG
|
||||
#include <assert.h>
|
||||
#include <c-stdaux.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "c-rbtree.h"
|
||||
#include "c-rbtree-private.h"
|
||||
|
||||
static void insert(CRBTree *t, CRBNode *n) {
|
||||
CRBNode **i, *p;
|
||||
|
||||
c_assert(t);
|
||||
c_assert(n);
|
||||
c_assert(!c_rbnode_is_linked(n));
|
||||
|
||||
i = &t->root;
|
||||
p = NULL;
|
||||
while (*i) {
|
||||
p = *i;
|
||||
if (n < *i) {
|
||||
i = &(*i)->left;
|
||||
} else {
|
||||
c_assert(n > *i);
|
||||
i = &(*i)->right;
|
||||
}
|
||||
}
|
||||
|
||||
c_rbtree_add(t, p, i, n);
|
||||
}
|
||||
|
||||
static void test_move(void) {
|
||||
CRBTree t1 = C_RBTREE_INIT, t2 = C_RBTREE_INIT;
|
||||
CRBNode n[128];
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < sizeof(n) / sizeof(*n); ++i) {
|
||||
n[i] = (CRBNode)C_RBNODE_INIT(n[i]);
|
||||
insert(&t1, &n[i]);
|
||||
}
|
||||
|
||||
c_assert(!c_rbtree_is_empty(&t1));
|
||||
c_assert(c_rbtree_is_empty(&t2));
|
||||
|
||||
c_rbtree_move(&t2, &t1);
|
||||
|
||||
c_assert(c_rbtree_is_empty(&t1));
|
||||
c_assert(!c_rbtree_is_empty(&t2));
|
||||
|
||||
while (t2.root)
|
||||
c_rbnode_unlink(t2.root);
|
||||
|
||||
c_assert(c_rbtree_is_empty(&t1));
|
||||
c_assert(c_rbtree_is_empty(&t2));
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
test_move();
|
||||
|
||||
return 0;
|
||||
}
|
||||
384
src/test-parallel.c
Normal file
384
src/test-parallel.c
Normal file
|
|
@ -0,0 +1,384 @@
|
|||
/*
|
||||
* Tests Lockless Tree Lookups
|
||||
* The RB-Tree implementation supports lockless tree lookups on shared
|
||||
* data-structures. While it does not guarantee correct results (you might skip
|
||||
* entire sub-trees), it does guarantee valid behavior (the traversal is
|
||||
* guaranteed to end and produce some valid result).
|
||||
* This test uses ptrace to run tree operations step-by-step in a separate
|
||||
* process, and after each instruction verify the pseudo-validity of the tree.
|
||||
* This means, a tree must only have valid left/right pointers (or NULL), and
|
||||
* must not contain any loops in those pointers.
|
||||
*
|
||||
* This test runs two processes with a shared context and tree. It runs them in
|
||||
* this order:
|
||||
*
|
||||
* | PARENT | CHILD |
|
||||
* +--------------------+-----------+
|
||||
* ~ ~ ~
|
||||
* test_parent_start
|
||||
* test_child1
|
||||
* test_parent_middle
|
||||
* test_child2
|
||||
* test_parent_end
|
||||
* ~ ~ ~
|
||||
* +--------------------+-----------+
|
||||
*
|
||||
* Additionally, on each TRAP of CHILD, the parent runs test_parent_step(). The
|
||||
* ptrace infrastructure generates a TRAP after each instruction, so this test
|
||||
* is very CPU aggressive in the parent.
|
||||
*/
|
||||
|
||||
#undef NDEBUG
|
||||
#include <assert.h>
|
||||
#include <c-stdaux.h>
|
||||
#include <errno.h>
|
||||
#include <inttypes.h>
|
||||
#include <sched.h>
|
||||
#include <signal.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <sys/mman.h>
|
||||
#include <sys/ptrace.h>
|
||||
#include <sys/resource.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/wait.h>
|
||||
#include <sys/syscall.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
#include "c-rbtree.h"
|
||||
#include "c-rbtree-private.h"
|
||||
|
||||
typedef struct {
|
||||
CRBNode rb;
|
||||
bool visited;
|
||||
} TestNode;
|
||||
|
||||
typedef struct {
|
||||
size_t mapsize;
|
||||
char *map;
|
||||
CRBTree *tree;
|
||||
TestNode *node_mem;
|
||||
CRBNode **nodes;
|
||||
CRBNode **cache;
|
||||
size_t n_nodes;
|
||||
} TestContext;
|
||||
|
||||
/* avoid ptrace-sigstop by using SIGKILL errors in traced children */
|
||||
#define child_assert(_expr) ((void)(!!(_expr) ? 1 : (raise(SIGKILL), 0)))
|
||||
|
||||
static int compare(CRBTree *t, void *k, CRBNode *n) {
|
||||
return (char *)n - (char *)k;
|
||||
}
|
||||
|
||||
static void shuffle(CRBNode **nodes, size_t n_memb) {
|
||||
unsigned int i, j;
|
||||
CRBNode *t;
|
||||
|
||||
for (i = 0; i < n_memb; ++i) {
|
||||
j = rand() % n_memb;
|
||||
t = nodes[j];
|
||||
nodes[j] = nodes[i];
|
||||
nodes[i] = t;
|
||||
}
|
||||
}
|
||||
|
||||
static void toggle_visit(CRBNode *n, bool set) {
|
||||
c_rbnode_entry(n, TestNode, rb)->visited = set;
|
||||
}
|
||||
|
||||
static bool fetch_visit(CRBNode *n) {
|
||||
return c_rbnode_entry(n, TestNode, rb)->visited;
|
||||
}
|
||||
|
||||
static void test_child1(TestContext *ctx) {
|
||||
CRBNode *p, **slot;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < ctx->n_nodes; ++i) {
|
||||
child_assert(!c_rbnode_is_linked(ctx->nodes[i]));
|
||||
slot = c_rbtree_find_slot(ctx->tree, compare, ctx->nodes[i], &p);
|
||||
c_rbtree_add(ctx->tree, p, slot, ctx->nodes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
static void test_child2(TestContext *ctx) {
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < ctx->n_nodes; ++i) {
|
||||
child_assert(c_rbnode_is_linked(ctx->nodes[i]));
|
||||
c_rbnode_unlink(ctx->nodes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
static void test_parent_start(TestContext *ctx) {
|
||||
size_t i;
|
||||
|
||||
/*
|
||||
* Generate a tree with @n_nodes entries. We store the entries in
|
||||
* @ctx->node_mem, generate a randomized access-map in @ctx->nodes
|
||||
* (i.e., an array of pointers to entries in @ctx->node_mem, but in
|
||||
* random order), and a temporary cache for free use in the parent.
|
||||
*
|
||||
* All this is stored in a MAP_SHARED memory region so it is equivalent
|
||||
* in child and parent.
|
||||
*/
|
||||
|
||||
ctx->n_nodes = 32;
|
||||
ctx->mapsize = sizeof(CRBTree);
|
||||
ctx->mapsize += ctx->n_nodes * sizeof(TestNode);
|
||||
ctx->mapsize += ctx->n_nodes * sizeof(CRBNode*);
|
||||
ctx->mapsize += ctx->n_nodes * sizeof(CRBNode*);
|
||||
|
||||
ctx->map = mmap(NULL, ctx->mapsize, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
|
||||
c_assert(ctx->map != MAP_FAILED);
|
||||
|
||||
ctx->tree = (void *)ctx->map;
|
||||
ctx->node_mem = (void *)(ctx->tree + 1);
|
||||
ctx->nodes = (void *)(ctx->node_mem + ctx->n_nodes);
|
||||
ctx->cache = (void *)(ctx->nodes + ctx->n_nodes);
|
||||
|
||||
for (i = 0; i < ctx->n_nodes; ++i) {
|
||||
ctx->nodes[i] = &ctx->node_mem[i].rb;
|
||||
c_rbnode_init(ctx->nodes[i]);
|
||||
}
|
||||
|
||||
shuffle(ctx->nodes, ctx->n_nodes);
|
||||
}
|
||||
|
||||
static void test_parent_middle(TestContext *ctx) {
|
||||
size_t i;
|
||||
|
||||
shuffle(ctx->nodes, ctx->n_nodes);
|
||||
|
||||
for (i = 0; i < ctx->n_nodes; ++i)
|
||||
child_assert(c_rbnode_is_linked(ctx->nodes[i]));
|
||||
}
|
||||
|
||||
static void test_parent_end(TestContext *ctx) {
|
||||
size_t i;
|
||||
int r;
|
||||
|
||||
for (i = 0; i < ctx->n_nodes; ++i)
|
||||
c_assert(!c_rbnode_is_linked(ctx->nodes[i]));
|
||||
|
||||
r = munmap(ctx->map, ctx->mapsize);
|
||||
c_assert(r >= 0);
|
||||
}
|
||||
|
||||
static void test_parent_step(TestContext *ctx) {
|
||||
size_t i, i_level;
|
||||
CRBNode *n, *p;
|
||||
|
||||
n = ctx->tree->root;
|
||||
i_level = 0;
|
||||
|
||||
while (n) {
|
||||
/* verify that we haven't visited @n, yet */
|
||||
c_assert(!fetch_visit(n));
|
||||
|
||||
/* verify @n is a valid node */
|
||||
for (i = 0; i < ctx->n_nodes; ++i)
|
||||
if (n == ctx->nodes[i])
|
||||
break;
|
||||
c_assert(i < ctx->n_nodes);
|
||||
|
||||
/* pre-order traversal and marker for cycle detection */
|
||||
if (n->left) {
|
||||
toggle_visit(n, true);
|
||||
ctx->cache[i_level++] = n;
|
||||
n = n->left;
|
||||
} else if (n->right) {
|
||||
toggle_visit(n, true);
|
||||
ctx->cache[i_level++] = n;
|
||||
n = n->right;
|
||||
} else {
|
||||
while (i_level > 0) {
|
||||
p = ctx->cache[i_level - 1];
|
||||
if (p->right && n != p->right) {
|
||||
n = p->right;
|
||||
break;
|
||||
}
|
||||
--i_level;
|
||||
n = p;
|
||||
toggle_visit(n, false);
|
||||
}
|
||||
if (i_level == 0)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int test_parallel_child(TestContext *ctx) {
|
||||
int r;
|
||||
|
||||
/*
|
||||
* Make parent trace us and enter stopped state. In case of EPERM, we
|
||||
* are either ptraced already, or are not privileged to run ptrace.
|
||||
* Exit via 0xdf to signal this condition to our parent.
|
||||
*/
|
||||
r = ptrace(PTRACE_TRACEME, 0, 0, 0);
|
||||
if (r < 0 && errno == EPERM)
|
||||
return 0xdf;
|
||||
|
||||
child_assert(r >= 0);
|
||||
|
||||
/* SIGUSR1 to signal readiness */
|
||||
r = raise(SIGUSR1);
|
||||
child_assert(r >= 0);
|
||||
|
||||
/* run first part */
|
||||
test_child1(ctx);
|
||||
|
||||
/* SIGURG to cause re-shuffle */
|
||||
r = raise(SIGURG);
|
||||
child_assert(r >= 0);
|
||||
|
||||
/* run second part */
|
||||
test_child2(ctx);
|
||||
|
||||
/* SIGUSR2 to signal end */
|
||||
r = raise(SIGUSR2);
|
||||
child_assert(r >= 0);
|
||||
|
||||
/* return known exit code to parent */
|
||||
return 0xef;
|
||||
}
|
||||
|
||||
static int test_parallel(void) {
|
||||
TestContext ctx = {};
|
||||
int r, pid, status;
|
||||
uint64_t n_instr, n_event;
|
||||
|
||||
/* create shared area for tree verification */
|
||||
test_parent_start(&ctx);
|
||||
|
||||
/* run child */
|
||||
pid = fork();
|
||||
c_assert(pid >= 0);
|
||||
if (pid == 0) {
|
||||
r = test_parallel_child(&ctx);
|
||||
_exit(r);
|
||||
}
|
||||
|
||||
/*
|
||||
* After setup, the child immediately enters TRACE-operation and raises
|
||||
* SIGUSR1. Once continued, the child performs the pre-configured tree
|
||||
* operations. When done, it raises SIGUSR2, and then exits.
|
||||
*
|
||||
* Here in the parent we catch all trace-stops of the child via waitpid
|
||||
* until we get no more such stop-events. Based on the stop-event we
|
||||
* get, we verify child-state, STEP it, or perform other state tracking.
|
||||
* We repeat this as long as we catch trace-stops from the child.
|
||||
*/
|
||||
n_instr = 0;
|
||||
n_event = 0;
|
||||
for (r = waitpid(pid, &status, 0);
|
||||
r == pid && WIFSTOPPED(status);
|
||||
r = waitpid(pid, &status, 0)) {
|
||||
|
||||
switch (WSTOPSIG(status)) {
|
||||
case SIGUSR1:
|
||||
n_event |= 0x1;
|
||||
|
||||
/* step child */
|
||||
r = ptrace(PTRACE_SINGLESTEP, pid, 0, 0);
|
||||
|
||||
/*
|
||||
* Some architectures (e.g., armv7hl) do not implement
|
||||
* SINGLESTEP, but return EIO. Skip the entire test in
|
||||
* this case.
|
||||
*/
|
||||
if (r < 0 && errno == EIO)
|
||||
return 77;
|
||||
|
||||
c_assert(r >= 0);
|
||||
break;
|
||||
|
||||
case SIGURG:
|
||||
n_event |= 0x2;
|
||||
test_parent_middle(&ctx);
|
||||
|
||||
/* step child */
|
||||
r = ptrace(PTRACE_SINGLESTEP, pid, 0, 0);
|
||||
c_assert(r >= 0);
|
||||
break;
|
||||
|
||||
case SIGUSR2:
|
||||
n_event |= 0x4;
|
||||
test_parent_end(&ctx);
|
||||
|
||||
/* continue child */
|
||||
r = ptrace(PTRACE_CONT, pid, 0, 0);
|
||||
c_assert(r >= 0);
|
||||
break;
|
||||
|
||||
case SIGTRAP:
|
||||
++n_instr;
|
||||
test_parent_step(&ctx);
|
||||
|
||||
/* step repeatedly as long as we get SIGTRAP */
|
||||
r = ptrace(PTRACE_SINGLESTEP, pid, 0, 0);
|
||||
c_assert(r >= 0);
|
||||
break;
|
||||
|
||||
default:
|
||||
c_assert(0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* verify our child exited cleanly */
|
||||
c_assert(r == pid);
|
||||
c_assert(!!WIFEXITED(status));
|
||||
|
||||
/*
|
||||
* 0xdf is signalled if ptrace is not allowed or we are already
|
||||
* ptraced. In this case we skip the test.
|
||||
*
|
||||
* 0xef is signalled on success.
|
||||
*
|
||||
* In any other case something went wobbly and we should fail hard.
|
||||
*/
|
||||
switch (WEXITSTATUS(status)) {
|
||||
case 0xef:
|
||||
break;
|
||||
case 0xdf:
|
||||
return 77;
|
||||
default:
|
||||
c_assert(0);
|
||||
break;
|
||||
}
|
||||
|
||||
/* verify we hit all child states */
|
||||
c_assert(n_event & 0x1);
|
||||
c_assert(n_event & 0x2);
|
||||
c_assert(n_event & 0x4);
|
||||
c_assert(n_instr > 0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
unsigned int i;
|
||||
int r;
|
||||
|
||||
if (!getenv("CRBTREE_TEST_PTRACE"))
|
||||
return 77;
|
||||
|
||||
/* we want stable tests, so use fixed seed */
|
||||
srand(0xdeadbeef);
|
||||
|
||||
/*
|
||||
* The tests are pseudo random; run them multiple times, each run will
|
||||
* have different orders and thus different results.
|
||||
*/
|
||||
for (i = 0; i < 4; ++i) {
|
||||
r = test_parallel();
|
||||
if (r)
|
||||
return r;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
270
src/test-posix.c
Normal file
270
src/test-posix.c
Normal file
|
|
@ -0,0 +1,270 @@
|
|||
/*
|
||||
* Tests to compare against POSIX RB-Trees
|
||||
* POSIX provides balanced binary trees via the tsearch(3p) API. glibc
|
||||
* implements them as RB-Trees. This file compares the performance of both.
|
||||
*
|
||||
* The semantic differences are:
|
||||
*
|
||||
* o The tsearch(3p) API does memory allocation of node structures itself,
|
||||
* rather than allowing the caller to embed it.
|
||||
*
|
||||
* o The c-rbtree API exposes the tree structure, allowing efficient tree
|
||||
* operations. Furthermore, it allows tree creation/deletion without taking
|
||||
* the expensive insert/remove paths. For instance, imagine you want to
|
||||
* create an rb-tree from a set of objects you have. With c-rbtree you can
|
||||
* do that without a single rotation or tree-restructuring in O(n), while
|
||||
* tsearch(3p) requires O(n log n).
|
||||
*
|
||||
* o The tsearch(3p) API requires one pointer-chase on each node access. This
|
||||
* is inherent to the design as it does not allow embedding the node in the
|
||||
* parent object. This slows down the API considerably.
|
||||
*
|
||||
* o The tsearch(3p) API does not allow multiple entries with the same key.
|
||||
*
|
||||
* o The tsearch(3p) API requires node lookup during removal. This does not
|
||||
* affect the worst-case runtime, but does reduce absolute performance.
|
||||
*
|
||||
* o The tsearch(3p) API does not allow O(1) tests whether a node is linked
|
||||
* or not. It requires a separate state variable per node.
|
||||
*
|
||||
* o The tsearch(3p) API does not allow walking the tree with context. The
|
||||
* only accessor twalk(3p) provides no tree context nor caller context to
|
||||
* the callback function.
|
||||
*
|
||||
* o The glibc implementation of tsearch(3p) uses RB-Trees without parent
|
||||
* pointers. Hence, tree traversal requires back-tracking. Performance is
|
||||
* similar, but it reduces memory consumption (though, at the same time it
|
||||
* stores the key pointer, and allocates the node on the heap, so overall
|
||||
* the memory consumption is higher still).
|
||||
* But the more important issue is, a node itself is not enough context as
|
||||
* tree iterator, but the full depth parent pointers are needed as well.
|
||||
*/
|
||||
|
||||
#undef NDEBUG
|
||||
#include <assert.h>
|
||||
#include <c-stdaux.h>
|
||||
#include <inttypes.h>
|
||||
#include <limits.h>
|
||||
#include <search.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include "c-rbtree.h"
|
||||
#include "c-rbtree-private.h"
|
||||
|
||||
typedef struct {
|
||||
int key;
|
||||
CRBNode rb;
|
||||
} Node;
|
||||
|
||||
#define node_from_rb(_rb) ((Node *)((char *)(_rb) - offsetof(Node, rb)))
|
||||
#define node_from_key(_key) ((Node *)((char *)(_key) - offsetof(Node, key)))
|
||||
|
||||
static void shuffle(Node **nodes, size_t n_memb) {
|
||||
unsigned int i, j;
|
||||
Node *t;
|
||||
|
||||
for (i = 0; i < n_memb; ++i) {
|
||||
j = rand() % n_memb;
|
||||
t = nodes[j];
|
||||
nodes[j] = nodes[i];
|
||||
nodes[i] = t;
|
||||
}
|
||||
}
|
||||
|
||||
static int compare(CRBTree *t, void *k, CRBNode *n) {
|
||||
int key = (int)(unsigned long)k;
|
||||
Node *node = node_from_rb(n);
|
||||
|
||||
return key - node->key;
|
||||
}
|
||||
|
||||
static uint64_t now(void) {
|
||||
struct timespec ts;
|
||||
int r;
|
||||
|
||||
r = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
|
||||
c_assert(r >= 0);
|
||||
return ts.tv_sec * UINT64_C(1000000000) + ts.tv_nsec;
|
||||
}
|
||||
|
||||
/*
|
||||
* POSIX tsearch(3p) based RB-Tree API
|
||||
*
|
||||
* This implements a small rb-tree API alongside c-rbtree but based on
|
||||
* tsearch(3p) and friends.
|
||||
*
|
||||
* Note that we don't care for OOM here, nor do we implement all the same
|
||||
* features as c-rbtree. This just does basic insertion, removal, and lookup
|
||||
* without any conflict detection.
|
||||
*
|
||||
* This also hard-codes 'Node' as object type that can be stored in the tree.
|
||||
*/
|
||||
|
||||
typedef struct PosixRBTree PosixRBTree;
|
||||
|
||||
struct PosixRBTree {
|
||||
void *root;
|
||||
};
|
||||
|
||||
static int posix_rbtree_compare(const void *a, const void *b) {
|
||||
return *(const int *)a - *(const int *)b;
|
||||
}
|
||||
|
||||
static void posix_rbtree_add(PosixRBTree *t, const Node *node) {
|
||||
void *res;
|
||||
|
||||
res = tsearch(&node->key, &t->root, posix_rbtree_compare);
|
||||
c_assert(*(int **)res == &node->key);
|
||||
}
|
||||
|
||||
static void posix_rbtree_remove(PosixRBTree *t, const Node *node) {
|
||||
void *res;
|
||||
|
||||
res = tdelete(&node->key, &t->root, posix_rbtree_compare);
|
||||
c_assert(res);
|
||||
}
|
||||
|
||||
static Node *posix_rbtree_find(PosixRBTree *t, int key) {
|
||||
void *res;
|
||||
|
||||
res = tfind(&key, &t->root, posix_rbtree_compare);
|
||||
return res ? node_from_key(*(int **)res) : NULL;
|
||||
}
|
||||
|
||||
static void posix_rbtree_visit(const void *n, const VISIT o, const int depth) {
|
||||
static int v;
|
||||
|
||||
/* HACK: twalk() has no context; use static context; reset on root */
|
||||
if (depth == 0 && (o == preorder || o == leaf))
|
||||
v = 0;
|
||||
|
||||
switch (o) {
|
||||
case postorder:
|
||||
case leaf:
|
||||
c_assert(v <= node_from_key(*(int **)n)->key);
|
||||
v = node_from_key(*(int **)n)->key;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void posix_rbtree_traverse(PosixRBTree *t) {
|
||||
twalk(t->root, posix_rbtree_visit);
|
||||
}
|
||||
|
||||
/*
|
||||
* Comparison between c-rbtree and tsearch(3p)
|
||||
*
|
||||
* Based on the tsearch(3p) API above, this now implements some comparisons
|
||||
* between c-rbtree and the POSIX API.
|
||||
*
|
||||
* The semantic differences are explained above. This does mostly performance
|
||||
* comparisons.
|
||||
*/
|
||||
|
||||
static void test_posix(void) {
|
||||
uint64_t ts, ts_c1, ts_c2, ts_c3, ts_c4;
|
||||
uint64_t ts_p1, ts_p2, ts_p3, ts_p4;
|
||||
PosixRBTree pt = {};
|
||||
CRBNode **slot, *p;
|
||||
CRBTree t = {};
|
||||
Node *nodes[2048];
|
||||
unsigned long i;
|
||||
int v;
|
||||
|
||||
/* allocate and initialize all nodes */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
nodes[i] = malloc(sizeof(*nodes[i]));
|
||||
c_assert(nodes[i]);
|
||||
nodes[i]->key = i;
|
||||
c_rbnode_init(&nodes[i]->rb);
|
||||
}
|
||||
|
||||
/* shuffle nodes */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* add all nodes, and verify that each node is linked */
|
||||
ts = now();
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i) {
|
||||
slot = c_rbtree_find_slot(&t, compare, (void *)(unsigned long)nodes[i]->key, &p);
|
||||
c_assert(slot);
|
||||
c_rbtree_add(&t, p, slot, &nodes[i]->rb);
|
||||
}
|
||||
ts_c1 = now() - ts;
|
||||
|
||||
ts = now();
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i)
|
||||
posix_rbtree_add(&pt, nodes[i]);
|
||||
ts_p1 = now() - ts;
|
||||
|
||||
/* shuffle nodes again */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* traverse tree in-order */
|
||||
ts = now();
|
||||
i = 0;
|
||||
v = 0;
|
||||
for (p = c_rbtree_first(&t); p; p = c_rbnode_next(p)) {
|
||||
++i;
|
||||
|
||||
c_assert(v <= node_from_rb(p)->key);
|
||||
v = node_from_rb(p)->key;
|
||||
}
|
||||
c_assert(i == sizeof(nodes) / sizeof(*nodes));
|
||||
ts_c2 = now() - ts;
|
||||
|
||||
ts = now();
|
||||
posix_rbtree_traverse(&pt);
|
||||
ts_p2 = now() - ts;
|
||||
|
||||
/* shuffle nodes again */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* lookup all nodes (in different order) */
|
||||
ts = now();
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i)
|
||||
c_assert(nodes[i] == c_rbtree_find_entry(&t, compare,
|
||||
(void *)(unsigned long)nodes[i]->key,
|
||||
Node, rb));
|
||||
ts_c3 = now() - ts;
|
||||
|
||||
ts = now();
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i)
|
||||
c_assert(nodes[i] == posix_rbtree_find(&pt, nodes[i]->key));
|
||||
ts_p3 = now() - ts;
|
||||
|
||||
/* shuffle nodes again */
|
||||
shuffle(nodes, sizeof(nodes) / sizeof(*nodes));
|
||||
|
||||
/* remove all nodes (in different order) */
|
||||
ts = now();
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i)
|
||||
c_rbnode_unlink(&nodes[i]->rb);
|
||||
ts_c4 = now() - ts;
|
||||
|
||||
ts = now();
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i)
|
||||
posix_rbtree_remove(&pt, nodes[i]);
|
||||
ts_p4 = now() - ts;
|
||||
|
||||
/* free nodes again */
|
||||
for (i = 0; i < sizeof(nodes) / sizeof(*nodes); ++i)
|
||||
free(nodes[i]);
|
||||
|
||||
fprintf(stderr, " insertion traversal lookup removal\n");
|
||||
fprintf(stderr, " c-rbtree: %8"PRIu64"ns %8"PRIu64"ns %8"PRIu64"ns %8"PRIu64"ns\n",
|
||||
ts_c1, ts_c2, ts_c3, ts_c4);
|
||||
fprintf(stderr, "tsearch(3p): %8"PRIu64"ns %8"PRIu64"ns %8"PRIu64"ns %8"PRIu64"ns\n",
|
||||
ts_p1, ts_p2, ts_p3, ts_p4);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
/* we want stable tests, so use fixed seed */
|
||||
srand(0xdeadbeef);
|
||||
|
||||
test_posix();
|
||||
return 0;
|
||||
}
|
||||
1
subprojects/c-stdaux
Submodule
1
subprojects/c-stdaux
Submodule
|
|
@ -0,0 +1 @@
|
|||
Subproject commit c5f166d02ff68af5cdcbad1bdcea2cb134e34ce4
|
||||
Loading…
Add table
Reference in a new issue