NetworkManager/src/settings/nm-settings-plugin.h

199 lines
8.2 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
* Copyright (C) 2007 - 2018 Red Hat, Inc.
* Copyright (C) 2008 Novell, Inc.
*/
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
#ifndef __NM_SETTINGS_PLUGIN_H__
#define __NM_SETTINGS_PLUGIN_H__
#include "nm-connection.h"
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
#include "nm-settings-storage.h"
typedef struct _NMSettingsPlugin NMSettingsPlugin;
typedef void (*NMSettingsPluginConnectionLoadCallback) (NMSettingsPlugin *self,
NMSettingsStorage *storage,
NMConnection *connection,
gpointer user_data);
typedef struct {
const char *filename;
GError *error;
bool handled:1;
} NMSettingsPluginConnectionLoadEntry;
#define NM_TYPE_SETTINGS_PLUGIN (nm_settings_plugin_get_type ())
#define NM_SETTINGS_PLUGIN(obj) (G_TYPE_CHECK_INSTANCE_CAST ((obj), NM_TYPE_SETTINGS_PLUGIN, NMSettingsPlugin))
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
#define NM_SETTINGS_PLUGIN_CLASS(klass) (G_TYPE_CHECK_CLASS_CAST ((klass), NM_TYPE_SETTINGS_PLUGIN, NMSettingsPluginClass))
#define NM_IS_SETTINGS_PLUGIN(obj) (G_TYPE_CHECK_INSTANCE_TYPE ((obj), NM_TYPE_SETTINGS_PLUGIN))
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
#define NM_IS_SETTINGS_PLUGIN_CLASS(klass) (G_TYPE_CHECK_CLASS_TYPE ((klass), NM_TYPE_SETTINGS_PLUGIN))
#define NM_SETTINGS_PLUGIN_GET_CLASS(obj) (G_TYPE_INSTANCE_GET_CLASS ((obj), NM_TYPE_SETTINGS_PLUGIN, NMSettingsPluginClass))
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
#define NM_SETTINGS_PLUGIN_UNMANAGED_SPECS_CHANGED "unmanaged-specs-changed"
#define NM_SETTINGS_PLUGIN_UNRECOGNIZED_SPECS_CHANGED "unrecognized-specs-changed"
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
struct _NMSettingsPlugin {
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
GObject parent;
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
};
typedef struct {
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
GObjectClass parent;
2008-04-07 Dan Williams <dcbw@redhat.com> * introspection/nm-settings-system.xml introspection/Makefile.am - Define the unmanaged devices interface for the system settings service * system-settings/src/nm-system-config-hal-manager.c system-settings/src/nm-system-config-hal-manager.h system-settings/src/nm-system-config-hal-manager-private.h system-settings/src/Makefile.am - Add a lightweight HAL manager object for tracking network devices for the purpose of determining unmanaged devices and which devices need the default DHCP connections * system-settings/src/nm-system-config-interface.c system-settings/src/nm-system-config-interface.h - (nm_system_config_interface_init): add the HAL manager as an argument - (nm_system_config_interface_get_unmanaged_devices): implement - Define 'unmanaged-devices-changed' signal * system-settings/src/dbus-settings.c system-settings/src/dbus-settings.h - Implement the unmanaged devices interface; some cleanups * system-settings/plugins/ifcfg-suse/plugin.c - Fixup for plugin interface changes * system-settings/plugins/ifcfg-fedora/plugin.c - (get_ether_device_udi): new function; find the device that has a specified MAC address and return its UDI - (get_udi_for_connection): new function; try to find the specific device a connection is locked to, if any - (device_added_cb, device_removed_cb): update unmanaged device list in response to HAL events - (get_unmanaged_devices): new function; return unmanaged device list - (build_one_connection): set the connection's locked device, if any - (write_auto_wired_connection): remove - (kill_old_auto_wired_file): remove the ifcfg-Auto Wired file if found - (handle_connection_changed): alert listeners that the unmanaged device list has changed - (init): fixup for plugin interface changes, implement unmanaged devices * system-settings/plugins/ifcfg-fedora/parser.c system-settings/plugins/ifcfg-fedora/parser.h - (connection_data_free): clean up connection UDI git-svn-id: http://svn-archive.gnome.org/svn/NetworkManager/trunk@3537 4912f4e0-d625-0410-9fb7-b9a5a253dbdc
2008-04-08 01:36:39 +00:00
/*
* Return a string list of specifications of devices which NetworkManager
* should not manage. Returned list will be freed by the system settings
* service, and each element must be allocated using g_malloc() or its
* variants (g_strdup, g_strdup_printf, etc).
*
* Each string in the list must be in one of the formats recognized by
* nm_device_spec_match_list().
2008-04-07 Dan Williams <dcbw@redhat.com> * introspection/nm-settings-system.xml introspection/Makefile.am - Define the unmanaged devices interface for the system settings service * system-settings/src/nm-system-config-hal-manager.c system-settings/src/nm-system-config-hal-manager.h system-settings/src/nm-system-config-hal-manager-private.h system-settings/src/Makefile.am - Add a lightweight HAL manager object for tracking network devices for the purpose of determining unmanaged devices and which devices need the default DHCP connections * system-settings/src/nm-system-config-interface.c system-settings/src/nm-system-config-interface.h - (nm_system_config_interface_init): add the HAL manager as an argument - (nm_system_config_interface_get_unmanaged_devices): implement - Define 'unmanaged-devices-changed' signal * system-settings/src/dbus-settings.c system-settings/src/dbus-settings.h - Implement the unmanaged devices interface; some cleanups * system-settings/plugins/ifcfg-suse/plugin.c - Fixup for plugin interface changes * system-settings/plugins/ifcfg-fedora/plugin.c - (get_ether_device_udi): new function; find the device that has a specified MAC address and return its UDI - (get_udi_for_connection): new function; try to find the specific device a connection is locked to, if any - (device_added_cb, device_removed_cb): update unmanaged device list in response to HAL events - (get_unmanaged_devices): new function; return unmanaged device list - (build_one_connection): set the connection's locked device, if any - (write_auto_wired_connection): remove - (kill_old_auto_wired_file): remove the ifcfg-Auto Wired file if found - (handle_connection_changed): alert listeners that the unmanaged device list has changed - (init): fixup for plugin interface changes, implement unmanaged devices * system-settings/plugins/ifcfg-fedora/parser.c system-settings/plugins/ifcfg-fedora/parser.h - (connection_data_free): clean up connection UDI git-svn-id: http://svn-archive.gnome.org/svn/NetworkManager/trunk@3537 4912f4e0-d625-0410-9fb7-b9a5a253dbdc
2008-04-08 01:36:39 +00:00
*/
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
GSList * (*get_unmanaged_specs) (NMSettingsPlugin *self);
2008-04-07 Dan Williams <dcbw@redhat.com> * introspection/nm-settings-system.xml introspection/Makefile.am - Define the unmanaged devices interface for the system settings service * system-settings/src/nm-system-config-hal-manager.c system-settings/src/nm-system-config-hal-manager.h system-settings/src/nm-system-config-hal-manager-private.h system-settings/src/Makefile.am - Add a lightweight HAL manager object for tracking network devices for the purpose of determining unmanaged devices and which devices need the default DHCP connections * system-settings/src/nm-system-config-interface.c system-settings/src/nm-system-config-interface.h - (nm_system_config_interface_init): add the HAL manager as an argument - (nm_system_config_interface_get_unmanaged_devices): implement - Define 'unmanaged-devices-changed' signal * system-settings/src/dbus-settings.c system-settings/src/dbus-settings.h - Implement the unmanaged devices interface; some cleanups * system-settings/plugins/ifcfg-suse/plugin.c - Fixup for plugin interface changes * system-settings/plugins/ifcfg-fedora/plugin.c - (get_ether_device_udi): new function; find the device that has a specified MAC address and return its UDI - (get_udi_for_connection): new function; try to find the specific device a connection is locked to, if any - (device_added_cb, device_removed_cb): update unmanaged device list in response to HAL events - (get_unmanaged_devices): new function; return unmanaged device list - (build_one_connection): set the connection's locked device, if any - (write_auto_wired_connection): remove - (kill_old_auto_wired_file): remove the ifcfg-Auto Wired file if found - (handle_connection_changed): alert listeners that the unmanaged device list has changed - (init): fixup for plugin interface changes, implement unmanaged devices * system-settings/plugins/ifcfg-fedora/parser.c system-settings/plugins/ifcfg-fedora/parser.h - (connection_data_free): clean up connection UDI git-svn-id: http://svn-archive.gnome.org/svn/NetworkManager/trunk@3537 4912f4e0-d625-0410-9fb7-b9a5a253dbdc
2008-04-08 01:36:39 +00:00
/*
* Return a string list of specifications of devices for which at least
* one non-NetworkManager-based configuration is defined. Returned list
* will be freed by the system settings service, and each element must be
* allocated using g_malloc() or its variants (g_strdup, g_strdup_printf,
* etc).
*
* Each string in the list must be in one of the formats recognized by
* nm_device_spec_match_list().
*/
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
GSList * (*get_unrecognized_specs) (NMSettingsPlugin *self);
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
/* Requests that the plugin load/reload a set of filenames.
*/
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
void (*load_connections) (NMSettingsPlugin *self,
NMSettingsPluginConnectionLoadEntry *entries,
gsize n_entries,
NMSettingsPluginConnectionLoadCallback callback,
gpointer user_data);
/* Requests that the plugin reload all connection files from disk,
* and emit signals reflecting new, changed, and removed connections.
*/
void (*reload_connections) (NMSettingsPlugin *self,
NMSettingsPluginConnectionLoadCallback callback,
gpointer user_data);
void (*load_connections_done) (NMSettingsPlugin *self);
gboolean (*add_connection) (NMSettingsPlugin *self,
NMConnection *connection,
NMSettingsStorage **out_storage,
NMConnection **out_connection,
GError **error);
gboolean (*update_connection) (NMSettingsPlugin *self,
NMSettingsStorage *storage,
NMConnection *connection,
NMSettingsStorage **out_storage,
NMConnection **out_connection,
GError **error);
gboolean (*delete_connection) (NMSettingsPlugin *self,
NMSettingsStorage *storage,
GError **error);
const char *plugin_name;
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
} NMSettingsPluginClass;
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
/*****************************************************************************/
GType nm_settings_plugin_get_type (void);
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
/*****************************************************************************/
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
#define NM_SETTINGS_STORAGE_PRINT_FMT \
NM_HASH_OBFUSCATE_PTR_FMT"/%s"
#define NM_SETTINGS_STORAGE_PRINT_ARG(storage) \
NM_HASH_OBFUSCATE_PTR (storage), \
nm_settings_plugin_get_plugin_name (nm_settings_storage_get_plugin (storage))
static inline const char *
nm_settings_plugin_get_plugin_name (NMSettingsPlugin *self)
{
NMSettingsPluginClass *klass;
nm_assert (NM_SETTINGS_PLUGIN (self));
klass = NM_SETTINGS_PLUGIN_GET_CLASS (self);
nm_assert (klass && klass->plugin_name && strlen (klass->plugin_name) > 0);
return klass->plugin_name;
}
/*****************************************************************************/
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
GSList *nm_settings_plugin_get_unmanaged_specs (NMSettingsPlugin *self);
GSList *nm_settings_plugin_get_unrecognized_specs (NMSettingsPlugin *self);
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
void nm_settings_plugin_reload_connections (NMSettingsPlugin *self,
NMSettingsPluginConnectionLoadCallback callback,
gpointer user_data);
NMSettingsPluginConnectionLoadEntry *nm_settings_plugin_create_connection_load_entries (const char *const*filenames,
gsize *out_len);
void nm_settings_plugin_load_connections (NMSettingsPlugin *self,
NMSettingsPluginConnectionLoadEntry *entries,
gsize n_entries,
NMSettingsPluginConnectionLoadCallback callback,
gpointer user_data);
void nm_settings_plugin_load_connections_done (NMSettingsPlugin *self);
gboolean nm_settings_plugin_add_connection (NMSettingsPlugin *self,
NMConnection *connection,
NMSettingsStorage **out_storage,
NMConnection **out_connection,
GError **error);
gboolean nm_settings_plugin_update_connection (NMSettingsPlugin *self,
NMSettingsStorage *storage,
NMConnection *connection,
NMSettingsStorage **out_storage,
NMConnection **out_connection,
GError **error);
gboolean nm_settings_plugin_delete_connection (NMSettingsPlugin *self,
NMSettingsStorage *storage,
GError **error);
/*****************************************************************************/
typedef NMSettingsPlugin *(*NMSettingsPluginFactoryFunc) (void);
NMSettingsPlugin *nm_settings_plugin_factory (void);
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
/*****************************************************************************
* Internal API
*****************************************************************************/
2008-04-07 Dan Williams <dcbw@redhat.com> * introspection/nm-settings-system.xml introspection/Makefile.am - Define the unmanaged devices interface for the system settings service * system-settings/src/nm-system-config-hal-manager.c system-settings/src/nm-system-config-hal-manager.h system-settings/src/nm-system-config-hal-manager-private.h system-settings/src/Makefile.am - Add a lightweight HAL manager object for tracking network devices for the purpose of determining unmanaged devices and which devices need the default DHCP connections * system-settings/src/nm-system-config-interface.c system-settings/src/nm-system-config-interface.h - (nm_system_config_interface_init): add the HAL manager as an argument - (nm_system_config_interface_get_unmanaged_devices): implement - Define 'unmanaged-devices-changed' signal * system-settings/src/dbus-settings.c system-settings/src/dbus-settings.h - Implement the unmanaged devices interface; some cleanups * system-settings/plugins/ifcfg-suse/plugin.c - Fixup for plugin interface changes * system-settings/plugins/ifcfg-fedora/plugin.c - (get_ether_device_udi): new function; find the device that has a specified MAC address and return its UDI - (get_udi_for_connection): new function; try to find the specific device a connection is locked to, if any - (device_added_cb, device_removed_cb): update unmanaged device list in response to HAL events - (get_unmanaged_devices): new function; return unmanaged device list - (build_one_connection): set the connection's locked device, if any - (write_auto_wired_connection): remove - (kill_old_auto_wired_file): remove the ifcfg-Auto Wired file if found - (handle_connection_changed): alert listeners that the unmanaged device list has changed - (init): fixup for plugin interface changes, implement unmanaged devices * system-settings/plugins/ifcfg-fedora/parser.c system-settings/plugins/ifcfg-fedora/parser.h - (connection_data_free): clean up connection UDI git-svn-id: http://svn-archive.gnome.org/svn/NetworkManager/trunk@3537 4912f4e0-d625-0410-9fb7-b9a5a253dbdc
2008-04-08 01:36:39 +00:00
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
void _nm_settings_plugin_emit_signal_unmanaged_specs_changed (NMSettingsPlugin *self);
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
void _nm_settings_plugin_emit_signal_unrecognized_specs_changed (NMSettingsPlugin *self);
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
/*****************************************************************************/
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
int nm_settings_plugin_cmp_by_priority (const NMSettingsPlugin *a,
const NMSettingsPlugin *b,
const GSList *plugin_list);
/*****************************************************************************/
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
/* forward declare this function from NMSettings. It's used by the ifcfg-rh plugin,
* but that shouldn't include all "nm-settings.h" header. */
NMSettings *nm_settings_get (void);
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
settings: rework tracking settings connections and settings plugins Completely rework how settings plugin handle connections and how NMSettings tracks the list of connections. Previously, settings plugins would return objects of (a subtype of) type NMSettingsConnection. The NMSettingsConnection was tightly coupled with the settings plugin. That has a lot of downsides. Change that. When changing this basic relation how settings connections are tracked, everything falls appart. That's why this is a huge change. Also, since I have to largely rewrite the settings plugins, I also added support for multiple keyfile directories, handle in-memory connections only by keyfile plugin and (partly) use copy-on-write NMConnection instances. I don't want to spend effort rewriting large parts while preserving the old way, that anyway should change. E.g. while rewriting ifcfg-rh, I don't want to let it handle in-memory connections because that's not right long-term. -- If the settings plugins themself create subtypes of NMSettingsConnection instances, then a lot of knowledge about tracking connections moves to the plugins. Just try to follow the code what happend during nm_settings_add_connection(). Note how the logic is spread out: - nm_settings_add_connection() calls plugin's add_connection() - add_connection() creates a NMSettingsConnection subtype - the plugin has to know that it's called during add-connection and not emit NM_SETTINGS_PLUGIN_CONNECTION_ADDED signal - NMSettings calls claim_connection() which hocks up the new NMSettingsConnection instance and configures the instance (like calling nm_settings_connection_added()). This summary does not sound like a lot, but try to follow that code. The logic is all over the place. Instead, settings plugins should have a very simple API for adding, modifying, deleting, loading and reloading connections. All the plugin does is to return a NMSettingsStorage handle. The storage instance is a handle to identify a profile in storage (e.g. a particular file). The settings plugin is free to subtype NMSettingsStorage, but it's not necessary. There are no more events raised, and the settings plugin implements the small API in a straightforward manner. NMSettings now drives all of this. Even NMSettingsConnection has now very little concern about how it's tracked and delegates only to NMSettings. This should make settings plugins simpler. Currently settings plugins are so cumbersome to implement, that we avoid having them. It should not be like that and it should be easy, beneficial and lightweight to create a new settings plugin. Note also how the settings plugins no longer care about duplicate UUIDs. Duplicated UUIDs are a fact of life and NMSettings must handle them. No need to overly concern settings plugins with that. -- NMSettingsConnection is exposed directly on D-Bus (being a subtype of NMDBusObject) but it was also a GObject type provided by the settings plugin. Hence, it was not possible to migrate a profile from one plugin to another. However that would be useful when one profile does not support a connection type (like ifcfg-rh not supporting VPN). Currently such migration is not implemented except for migrating them to/from keyfile's run directory. The problem is that migrating profiles in general is complicated but in some cases it is important to do. For example checkpoint rollback should recreate the profile in the right settings plugin, not just add it to persistent storage. This is not yet properly implemented. -- Previously, both keyfile and ifcfg-rh plugin implemented in-memory (unsaved) profiles, while ifupdown plugin cannot handle them. That meant duplication of code and a ifupdown profile could not be modified or made unsaved. This is now unified and only keyfile plugin handles in-memory profiles (bgo #744711). Also, NMSettings is aware of such profiles and treats them specially. In particular, NMSettings drives the migration between persistent and non-persistent storage. Note that a settings plugins may create truly generated, in-memory profiles. The settings plugin is free to generate and persist the profiles in any way it wishes. But the concept of "unsaved" profiles is now something explicitly handled by keyfile plugin. Also, these "unsaved" keyfile profiles are persisted to file system too, to the /run directory. This is great for two reasons: first of all, all profiles from keyfile storage in fact have a backing file -- even the unsaved ones. It also means you can create "unsaved" profiles in /run and load them with `nmcli connection load`, meaning there is a file based API for creating unsaved profiles. The other advantage is that these profiles now survive restarting NetworkManager. It's paramount that restarting the daemon is as non-disruptive as possible. Persisting unsaved files to /run improves here significantly. -- In the past, NMSettingsConnection also implemented NMConnection interface. That was already changed a while ago and instead users call now nm_settings_connection_get_connection() to delegate to a NMSimpleConnection. What however still happened was that the NMConnection instance gets never swapped but instead the instance was modified with nm_connection_replace_settings_from_connection(), clear-secrets, etc. Change that and treat the NMConnection instance immutable. Instead of modifying it, reference/clone a new instance. This changes that previously when somebody wanted to keep a reference to an NMConnection, then the profile would be cloned. Now, it is supposed to be safe to reference the instance directly and everybody must ensure not to modify the instance. nmtst_connection_assert_unchanging() should help with that. The point is that the settings plugins may keep references to the NMConnection instance, and so does the NMSettingsConnection. We want to avoid cloning the instances as long as they are the same. Likewise, the device's applied connection can now also be referenced instead of cloning it. This is not yet done, and possibly there are further improvements possible. -- Also implement multiple keyfile directores /usr/lib, /etc, /run (rh #1674545, bgo #772414). It was always the case that multiple files could provide the same UUID (both in case of keyfile and ifcfg-rh). For keyfile plugin, if a profile in read-only storage in /usr/lib gets modified, then it gets actually stored in /etc (or /run, if the profile is unsaved). -- While at it, make /etc/network/interfaces profiles for ifupdown plugin reloadable. -- https://bugzilla.gnome.org/show_bug.cgi?id=772414 https://bugzilla.gnome.org/show_bug.cgi?id=744711 https://bugzilla.redhat.com/show_bug.cgi?id=1674545
2019-06-13 17:12:20 +02:00
const char *nm_settings_get_dbus_path_for_uuid (NMSettings *self,
const char *uuid);
settings: make NMSettingsPlugin a regular GObject instance and not an interface NMSettingsPlugin was a glib interface, not a regular GObject instance. Accordingly, settings plugins would implement this interface instead of subclassing a parent type. Refactor the code, and make NMSettingsPlugin a GObject type. Plugins are now required to subclass this type. Glib interfaces are more cumbersome than helpful. At least, unless there is a good reason for using them. Our settings plugins are all internal API and are entirely under our control. It also means, this change is fine, as there are no implementations outside of this source tree. Using interfaces do would allow more flexibility in implementing the settings plugin. For example, the plugin would be able to derive from any other GObject type, like NMKimchiRefrigerator. But why would we even? Let's not add monster classes that implement house appliances beside NMSettingsPluginInterface. The settings plugin should have one purpose only: being a settings plugin. Hence, requiring it to subclass NMSettingsPlugin is more than resonable. We don't need interfaces for this. Now that NMSettingsPlugin is a regular object instance, it may also have state, and potentially could provide common functionality for the plugin implementation -- if that turns out to be useful. Arguably, an interface can have state too, for example by attaching the state somewhere else (like NMConnection does). But let's just say no. On a minor note, this also avoids some tiny overhead that comes with glib interfaces.
2018-08-24 13:37:06 +02:00
#endif /* __NM_SETTINGS_PLUGIN_H__ */