NetworkManager/libnm-core/tests/test-general.c

9355 lines
347 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2008 - 2018 Red Hat, Inc.
*/
2015-04-10 09:16:11 +02:00
#define NM_GLIB_COMPAT_H_TEST
#include "nm-default.h"
shared: add nm_utils_g_main_context_create_integrate_source() for integrating a GMainContext in another We will rework NMClient entirely. Then, the synchronous initialization will also use the asynchronous code paths. The difference will be that with synchronous initialization, all D-Bus interaction will be done with an internal GMainContext as current thread default, and that internal context will run until initialization completes. Note that even after initialization completes, it cannot be swapped back to the user's (outer) GMainContext. That is because contexts are essentially the queue for our D-Bus events, and we cannot swap from one queue to the other in a race free manner (or a full resync). In other words, the two contexts are not in sync, so after using the internal context NMClient needs to stick to that (at least, until the name owner gets lost, which gives an opportunity to resync and switch back to the user's main context). We thus need to hook the internal (inner) GMainContext with the user's (outer) context, so when the user iterates the outer context, events on the inner context get dispatched. Add nm_utils_g_main_context_create_integrate_source() to create such a GSource for integrating two contexts. Note that the use-case here is limited: the integrated, inner main context must not be explicitly iterated except from being dispatched by the integrating source. Otherwise, you'd get recursive runs, possible deadlocks and general ugliness. NMClient must show restrain how to use the inner context while it is integrated.
2019-11-02 16:55:43 +01:00
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "nm-std-aux/c-list-util.h"
#include "nm-glib-aux/nm-enum-utils.h"
#include "nm-glib-aux/nm-str-buf.h"
#include "nm-glib-aux/nm-json-aux.h"
#include "systemd/nm-sd-utils-shared.h"
#include "nm-utils.h"
#include "nm-setting-private.h"
#include "nm-utils.h"
#include "nm-utils-private.h"
#include "nm-core-internal.h"
#include "nm-core-tests-enum-types.h"
libnm: rework team handling of JSON config Completely refactor the team/JSON handling in libnm's NMSettingTeam and NMSettingTeamPort. - team handling was added as rh#1398925. The goal is to have a more convenient way to set properties than constructing JSON. This requires libnm to implement the hard task of parsing JSON (and exposing well-understood properties) and generating JSON (based on these "artificial" properties). But not only libnm. In particular nmcli and the D-Bus API must make this "simpler" API accessible. - since NMSettingTeam and NMSettingTeamPort are conceptually the same, add "libnm-core/nm-team-utils.h" and NMTeamSetting that tries to handle the similar code side-by-sdie. The setting classes now just delegate for everything to NMTeamSetting. - Previously, there was a very fuzzy understanding of the provided JSON config. Tighten that up, when setting a JSON config it regenerates/parses all other properties and tries to make the best of it. When modifying any abstraction property, the entire JSON config gets regenerated. In particular, don't try to merge existing JSON config with the new fields. If the user uses the abstraction API, then the entire JSON gets replaced. For example note that nm_setting_team_add_link_watcher() would not be reflected in the JSON config (a bug). That only accidentally worked because client would serializing the changed link watcher to GVariant/D-Bus, then NetworkManager would set it via g_object_set(), which would renerate the JSON, and finally persist it to disk. But as far as libnm is concerned, nm_setting_team_add_link_watcher() would bring the settings instance in an inconsistent state where JSON and the link watcher property disagree. Setting any property must immediately update both the JSON and the abstraction API. - when constucting a team setting from D-Bus, we would previously parse both "config" and abstraction properties. That is wrong. Since our settings plugins only support JSON, all information must be present in the JSON config anyway. So, when "config" is present, only the JSON must be parsed. In the best case, the other information is redudant and contributes nothing. In the worse case, they information differs (which might happen if the client version differs from the server version). As the settings plugin only supports JSON, it's wrong to consider redundant, differing information from D-Bus. - we now only convert string to JSON or back when needed. Previously, setting a property resulted in parsing several JSON multiple times (per property). All operations should now scale well and be reasonably efficient. - also the property-changed signals are now handled correctly. Since NMTeamSetting knows the current state of all attributes, it can emit the exact property changed signals for what changed. - we no longer use libjansson to generate the JSON. JSON is supposed to be a machine readable exchange format, hence a major goal is to be easily handled by applications. While parsing JSON is not so trivial, writing a well-known set of values to JSON is. The advantage is that when you build libnm without libjansson support, then we still can convert the artificial properties to JSON. - Requiring libjansson in libnm is a burden, because most of the time it is not needed (as most users don't create team configurations). With this change we only require it to parse the team settings (no longer to write them). It should be reasonably simple to use a more minimalistic JSON parser that is sufficient for us, so that we can get rid of the libjansson dependency (for libnm). This also avoids the pain that we have due to the symbol collision of libjansson and libjson-glib. https://bugzilla.redhat.com/show_bug.cgi?id=1691619
2019-05-06 12:36:41 +02:00
#include "nm-team-utils.h"
#include "nm-setting-8021x.h"
#include "nm-setting-adsl.h"
#include "nm-setting-bluetooth.h"
#include "nm-setting-bond.h"
#include "nm-setting-bridge.h"
#include "nm-setting-bridge-port.h"
#include "nm-setting-cdma.h"
#include "nm-setting-connection.h"
#include "nm-setting-ethtool.h"
#include "nm-setting-generic.h"
#include "nm-setting-gsm.h"
#include "nm-setting-infiniband.h"
#include "nm-setting-ip4-config.h"
#include "nm-setting-ip6-config.h"
#include "nm-setting-olpc-mesh.h"
#include "nm-setting-ppp.h"
#include "nm-setting-pppoe.h"
#include "nm-setting-serial.h"
#include "nm-setting-team.h"
#include "nm-setting-team-port.h"
#include "nm-setting-user.h"
#include "nm-setting-vlan.h"
#include "nm-setting-vpn.h"
#include "nm-setting-wimax.h"
#include "nm-setting-wired.h"
#include "nm-setting-wireless.h"
#include "nm-setting-wireless-security.h"
2018-03-09 10:51:49 +01:00
#include "nm-setting-wpan.h"
#include "nm-simple-connection.h"
#include "nm-keyfile/nm-keyfile-internal.h"
#include "nm-glib-aux/nm-dedup-multi.h"
shared: build helper "libnm-libnm-core-{intern|aux}.la" library for libnm-core "libnm-core" implements common functionality for "NetworkManager" and "libnm". Note that clients like "nmcli" cannot access the internal API provided by "libnm-core". So, if nmcli wants to do something that is also done by "libnm-core", , "libnm", or "NetworkManager", the code would have to be duplicated. Instead, such code can be in "libnm-libnm-core-{intern|aux}.la". Note that: 0) "libnm-libnm-core-intern.la" is used by libnm-core itsself. On the other hand, "libnm-libnm-core-aux.la" is not used by libnm-core, but provides utilities on top of it. 1) they both extend "libnm-core" with utlities that are not public API of libnm itself. Maybe part of the code should one day become public API of libnm. On the other hand, this is code for which we may not want to commit to a stable interface or which we don't want to provide as part of the API. 2) "libnm-libnm-core-intern.la" is statically linked by "libnm-core" and thus directly available to "libnm" and "NetworkManager". On the other hand, "libnm-libnm-core-aux.la" may be used by "libnm" and "NetworkManager". Both libraries may be statically linked by libnm clients (like nmcli). 3) it must only use glib, libnm-glib-aux.la, and the public API of libnm-core. This is important: it must not use "libnm-core/nm-core-internal.h" nor "libnm-core/nm-utils-private.h" so the static library is usable by nmcli which couldn't access these. Note that "shared/nm-meta-setting.c" is an entirely different case, because it behaves differently depending on whether linking against "libnm-core" or the client programs. As such, this file must be compiled twice. (cherry picked from commit af07ed01c04867e281cc3982a7ab0d244d4f8e2e)
2019-04-15 09:26:53 +02:00
#include "nm-libnm-core-intern/nm-ethtool-utils.h"
#include "test-general-enums.h"
#include "nm-utils/nm-test-utils.h"
/* When passing a "bool" typed argument to a variadic function that
* expects a gboolean, the compiler will promote the integer type
* to have at least size (int). That way:
* g_object_set (obj, PROP_BOOL, bool_val, NULL);
* will just work correctly. */
G_STATIC_ASSERT (sizeof (gboolean) == sizeof (int));
G_STATIC_ASSERT (sizeof (bool) <= sizeof (int));
/*****************************************************************************/
2019-03-20 10:43:54 +01:00
static void
test_nm_ascii_spaces (void)
{
int i;
const char *const S = NM_ASCII_SPACES;
for (i = 0; S[i]; i++)
g_assert (!strchr (&S[i + 1], S[i]));
for (i = 0; S[i] != '\0'; i++)
g_assert (g_ascii_isspace (S[i]));
g_assert (!g_ascii_isspace ((char) 0));
for (i = 1; i < 0x100; i++) {
if (g_ascii_isspace ((char) i))
g_assert (strchr (S, (char) i));
else
g_assert (!strchr (S, (char) i));
}
}
/*****************************************************************************/
typedef struct _nm_packed {
int v0;
char v1;
double v2;
guint8 v3;
} TestHashStruct;
static void
_test_hash_struct (int v0, char v1, double v2, guint8 v3)
{
const TestHashStruct s = {
.v0 = v0,
.v1 = v1,
.v2 = v2,
.v3 = v3,
};
NMHashState h;
guint hh;
nm_hash_init (&h, 100);
nm_hash_update (&h, &s, sizeof (s));
hh = nm_hash_complete (&h);
nm_hash_init (&h, 100);
nm_hash_update_val (&h, v0);
nm_hash_update_val (&h, v1);
nm_hash_update_val (&h, v2);
nm_hash_update_val (&h, v3);
g_assert_cmpint (hh, ==, nm_hash_complete (&h));
nm_hash_init (&h, 100);
nm_hash_update_vals (&h, v0, v1, v2, v3);
g_assert_cmpint (hh, ==, nm_hash_complete (&h));
}
static guint
_test_hash_str (const char *str)
{
NMHashState h;
guint v, v2;
const guint SEED = 10;
nm_hash_init (&h, SEED);
nm_hash_update_str0 (&h, str);
v = nm_hash_complete (&h);
/* assert that hashing a string and a buffer yields the
* same result.
*
* I think that is a desirable property. */
nm_hash_init (&h, SEED);
nm_hash_update_mem (&h, str, strlen (str));
v2 = nm_hash_complete (&h);
g_assert (v == v2);
return v;
}
#define _test_hash_vals(type, ...) \
G_STMT_START { \
NMHashState h0, h1, h2, h3; \
const type v[] = { __VA_ARGS__ }; \
guint h; \
guint i; \
\
nm_hash_init (&h0, 10); \
nm_hash_init (&h1, 10); \
nm_hash_init (&h2, 10); \
nm_hash_init (&h3, 10); \
\
/* assert that it doesn't matter, whether we hash the values individually,
* or all at once, or via the convenience macros nm_hash_update_val()
* and nm_hash_update_vals(). */ \
for (i = 0; i < G_N_ELEMENTS (v); i++) { \
nm_hash_update (&h0, &v[i], sizeof (type)); \
nm_hash_update_val (&h1, v[i]); \
} \
nm_hash_update_vals (&h2, __VA_ARGS__); \
nm_hash_update (&h3, v, sizeof (v)); \
\
h = nm_hash_complete (&h0); \
g_assert_cmpint (h, ==, nm_hash_complete (&h1)); \
g_assert_cmpint (h, ==, nm_hash_complete (&h2)); \
g_assert_cmpint (h, ==, nm_hash_complete (&h3)); \
} G_STMT_END
static void
test_nm_hash (void)
{
g_assert (nm_hash_static (0));
g_assert (nm_hash_static (777));
g_assert (nm_hash_str (NULL));
g_assert (nm_hash_str (""));
g_assert (nm_hash_str ("a"));
g_assert (nm_hash_ptr (NULL));
g_assert (nm_hash_ptr (""));
g_assert (nm_hash_ptr ("a"));
_test_hash_str ("");
_test_hash_str ("a");
_test_hash_str ("aa");
_test_hash_str ("diceros bicornis longipes");
/* assert that nm_hash_update_vals() is the same as calling nm_hash_update_val() multiple times. */
_test_hash_vals (int, 1);
_test_hash_vals (int, 1, 2);
_test_hash_vals (int, 1, 2, 3);
_test_hash_vals (int, 1, 2, 3, 4);
_test_hash_vals (long, 1l);
_test_hash_vals (long, 1l, 2l, 3l, 4l, 5l);
_test_hash_struct (10, 'a', 5.4, 7);
_test_hash_struct (-10, '\0', -5.4e49, 255);
g_assert_cmpint (NM_HASH_COMBINE_BOOLS (guint8, 1, 0), ==, 0x002);
g_assert_cmpint (NM_HASH_COMBINE_BOOLS (guint8, 1, 1), ==, 0x003);
g_assert_cmpint (NM_HASH_COMBINE_BOOLS (guint8, 1, 1, 0, 0, 0, 0), ==, 0x030);
g_assert_cmpint (NM_HASH_COMBINE_BOOLS (guint8, 1, 1, 0, 0, 0, 1), ==, 0x031);
g_assert_cmpint (NM_HASH_COMBINE_BOOLS (guint8, 0, 0, 1, 1, 0, 0, 0, 1), ==, 0x031);
g_assert_cmpint (NM_HASH_COMBINE_BOOLS (guint16, 0, 0, 1, 1, 0, 0, 0, 1), ==, 0x031);
g_assert_cmpint (NM_HASH_COMBINE_BOOLS (guint16, 0, 0, 0, 1, 1, 0, 0, 0, 1), ==, 0x031);
g_assert_cmpint (NM_HASH_COMBINE_BOOLS (guint16, 1, 0, 0, 1, 1, 0, 0, 0, 1), ==, 0x131);
}
/*****************************************************************************/
static void
test_nm_g_slice_free_fcn (void)
{
gpointer p;
struct {
char a1;
char a2;
} xx;
p = g_slice_new (gint64);
(nm_g_slice_free_fcn (gint64)) (p);
p = g_slice_new (gint32);
(nm_g_slice_free_fcn (gint32)) (p);
p = g_slice_new (int);
(nm_g_slice_free_fcn (int)) (p);
p = g_slice_new (gint64);
nm_g_slice_free_fcn_gint64 (p);
p = g_slice_alloc (sizeof (xx));
(nm_g_slice_free_fcn (xx)) (p);
}
/*****************************************************************************/
static void
_do_test_nm_utils_strsplit_set_f_one (NMUtilsStrsplitSetFlags flags,
const char *str,
gsize words_len,
const char *const*exp_words)
{
#define DELIMITERS " \n"
#define DELIMITERS_C ' ', '\n'
gs_free const char **words = NULL;
gsize i, j, k;
const gboolean f_allow_escaping = NM_FLAGS_HAS (flags, NM_UTILS_STRSPLIT_SET_FLAGS_ALLOW_ESCAPING);
const gboolean f_preserve_empty = NM_FLAGS_HAS (flags, NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY);
const char *s1;
gsize initial_offset;
gs_strfreev char **words_g = NULL;
g_assert (!NM_FLAGS_ANY (flags, ~( NM_UTILS_STRSPLIT_SET_FLAGS_ALLOW_ESCAPING
| NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY)));
/* assert that the expected words are valid (and don't contain unescaped delimiters). */
for (i = 0; i < words_len; i++) {
const char *w = exp_words[i];
g_assert (w);
if (!f_preserve_empty)
g_assert (w[0]);
for (k = 0; w[k]; ) {
if ( f_allow_escaping
&& w[k] == '\\') {
k++;
if (w[k] == '\0')
break;
k++;
continue;
}
g_assert (!NM_IN_SET (w[k], DELIMITERS_C));
k++;
}
if (!f_allow_escaping)
g_assert (!NM_STRCHAR_ANY (w, ch, NM_IN_SET (ch, DELIMITERS_C)));
}
initial_offset = (f_preserve_empty || !str)
? 0u
: strspn (str, DELIMITERS);
/* first compare our expected values with what g_strsplit_set() would
* do. */
words_g = str ? g_strsplit_set (str, DELIMITERS, -1) : NULL;
if (str == NULL) {
g_assert_cmpint (words_len, ==, 0);
g_assert (!words_g);
} else if (nm_streq0 (str, "")) {
g_assert_cmpint (words_len, ==, 0);
g_assert (words_g);
g_assert (!words_g[0]);
} else {
g_assert (words_g);
g_assert (words_g[0]);
if (!f_allow_escaping) {
if (!f_preserve_empty) {
for (i = 0, j = 0; words_g[i]; i++) {
if (words_g[i][0] == '\0')
g_free (words_g[i]);
else
words_g[j++] = words_g[i];
}
words_g[j] = NULL;
}
if (f_preserve_empty)
g_assert_cmpint (words_len, >, 0);
for (i = 0; i < words_len; i++) {
g_assert (exp_words[i]);
g_assert_cmpstr (exp_words[i], ==, words_g[i]);
}
g_assert (words_g[words_len] == NULL);
g_assert_cmpint (NM_PTRARRAY_LEN (words_g), ==, words_len);
g_assert (_nm_utils_strv_cmp_n (exp_words, words_len, NM_CAST_STRV_CC (words_g), -1) == 0);
}
}
if ( flags == NM_UTILS_STRSPLIT_SET_FLAGS_NONE
&& nmtst_get_rand_bool ())
words = nm_utils_strsplit_set (str, DELIMITERS);
else if ( flags == NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY
&& nmtst_get_rand_bool ())
words = nm_utils_strsplit_set_with_empty (str, DELIMITERS);
else
words = nm_utils_strsplit_set_full (str, DELIMITERS, flags);
g_assert_cmpint (NM_PTRARRAY_LEN (words), ==, words_len);
if (words_len == 0) {
g_assert (!words);
g_assert ( !str
|| NM_STRCHAR_ALL (str, ch, NM_IN_SET (ch, DELIMITERS_C)));
return;
}
g_assert (words);
for (i = 0; i < words_len; i++)
g_assert_cmpstr (exp_words[i], ==, words[i]);
g_assert (words[words_len] == NULL);
g_assert (_nm_utils_strv_cmp_n (exp_words, words_len, words, -1) == 0);
s1 = words[0];
g_assert (s1 >= (char *) &words[words_len + 1]);
s1 = &s1[strlen (str)];
for (i = 1; i < words_len; i++) {
g_assert (&(words[i - 1])[strlen (words[i - 1])] < words[i]);
g_assert (words[i] <= s1);
}
/* while strsplit removes all delimiters, we can relatively easily find them
* in the original string. Assert that the original string and the pointer offsets
* of words correspond. In particular, find idx_delim_after and idx_delim_before
* to determine which delimiter was after/before a word. */
{
gsize idx_word_start;
gsize idx_delim_after_old = G_MAXSIZE;
idx_word_start = initial_offset;
for (i = 0; i < words_len; i++) {
const gsize l_i = strlen (words[i]);
gsize idx_delim_after;
gsize idx_delim_before;
/* find the delimiter *after* words[i]. We can do that by looking at the next
* word and calculating the pointer difference.
*
* The delimiter after the very last word is '\0' and requires strlen() to find. */
idx_delim_after = initial_offset + ((words[i] - words[0]) + l_i);
if (idx_delim_after != idx_word_start + l_i) {
g_assert (!f_preserve_empty);
g_assert_cmpint (idx_word_start + l_i, <, idx_delim_after);
idx_word_start = idx_delim_after - l_i;
}
if (i + 1 < words_len) {
gsize x = initial_offset + ((words[i + 1] - words[0]) - 1);
if (idx_delim_after != x) {
g_assert (!f_preserve_empty);
g_assert_cmpint (idx_delim_after, <, x);
for (k = idx_delim_after; k <= x; k++)
g_assert (NM_IN_SET (str[k], DELIMITERS_C));
}
g_assert (NM_IN_SET (str[idx_delim_after], DELIMITERS_C));
} else {
if (f_preserve_empty)
g_assert (NM_IN_SET (str[idx_delim_after], '\0'));
else
g_assert (NM_IN_SET (str[idx_delim_after], '\0', DELIMITERS_C));
}
/* find the delimiter *before* words[i]. */
if (i == 0) {
/* there is only a delimiter *before*, with !f_preserve_empty and leading
* delimiters. */
idx_delim_before = G_MAXSIZE;
if (initial_offset > 0) {
g_assert (!f_preserve_empty);
idx_delim_before = initial_offset - 1;
}
} else
idx_delim_before = initial_offset + (words[i] - words[0]) - 1;
if (idx_delim_before != G_MAXSIZE)
g_assert (NM_IN_SET (str[idx_delim_before], DELIMITERS_C));
if (idx_delim_after_old != idx_delim_before) {
g_assert (!f_preserve_empty);
if (i == 0) {
g_assert_cmpint (initial_offset, >, 0);
g_assert_cmpint (idx_delim_before, !=, G_MAXSIZE);
g_assert_cmpint (idx_delim_before, ==, initial_offset - 1);
} else {
g_assert_cmpint (idx_delim_after_old, !=, G_MAXSIZE);
g_assert_cmpint (idx_delim_before, !=, G_MAXSIZE);
g_assert_cmpint (idx_delim_after_old, <, idx_delim_before);
for (k = idx_delim_after_old; k <= idx_delim_before; k++)
g_assert (NM_IN_SET (str[k], DELIMITERS_C));
}
}
for (k = 0; k < l_i; ) {
if ( f_allow_escaping
&& str[idx_word_start + k] == '\\') {
k++;
if (k >= l_i)
break;
k++;
continue;
}
g_assert (!NM_IN_SET (str[idx_word_start + k], DELIMITERS_C));
k++;
}
g_assert (strncmp (words[i], &str[idx_word_start], l_i) == 0);
if (i > 0) {
const char *s = &(words[i - 1])[strlen (words[i - 1]) + 1];
if (s != words[i]) {
g_assert (!f_preserve_empty);
g_assert (s < words[i]);
}
}
idx_word_start += l_i + 1;
idx_delim_after_old = idx_delim_after;
}
}
}
static void
_do_test_nm_utils_strsplit_set_f (NMUtilsStrsplitSetFlags flags,
const char *str,
gsize words_len,
const char *const*exp_words)
{
_do_test_nm_utils_strsplit_set_f_one (flags, str, words_len, exp_words);
if (NM_FLAGS_HAS (flags, NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY)) {
gs_unref_ptrarray GPtrArray *exp_words2 = NULL;
gsize k;
exp_words2 = g_ptr_array_new ();
for (k = 0; k < words_len; k++) {
if (exp_words[k][0] != '\0')
g_ptr_array_add (exp_words2, (gpointer) exp_words[k]);
}
_do_test_nm_utils_strsplit_set_f_one (flags & (~NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY),
str,
exp_words2->len,
(const char *const*) exp_words2->pdata);
}
}
#define do_test_nm_utils_strsplit_set_f(flags, str, ...) \
_do_test_nm_utils_strsplit_set_f (flags, \
str, \
NM_NARG (__VA_ARGS__), \
NM_MAKE_STRV (__VA_ARGS__))
#define do_test_nm_utils_strsplit_set(allow_escaping, str, ...) \
do_test_nm_utils_strsplit_set_f ( (allow_escaping) \
? NM_UTILS_STRSPLIT_SET_FLAGS_ALLOW_ESCAPING \
: NM_UTILS_STRSPLIT_SET_FLAGS_NONE, \
str, \
##__VA_ARGS__)
static void
_do_test_nm_utils_strsplit_set_simple (NMUtilsStrsplitSetFlags flags,
const char *str,
gsize words_len,
const char *const*exp_words)
{
gs_free const char **tokens = NULL;
gsize n_tokens;
tokens = nm_utils_strsplit_set_full (str, DELIMITERS, flags);
if (!tokens) {
g_assert_cmpint (words_len, ==, 0);
return;
}
g_assert (str && str[0]);
g_assert_cmpint (words_len, >, 0);
n_tokens = NM_PTRARRAY_LEN (tokens);
if (_nm_utils_strv_cmp_n (exp_words, words_len, tokens, -1) != 0) {
gsize i;
g_print (">>> split \"%s\" (flags %x) got %zu tokens (%zu expected)\n", str, (guint) flags, n_tokens, words_len);
for (i = 0; i < NM_MAX (n_tokens, words_len); i++) {
const char *s1 = i < n_tokens ? tokens[i] : NULL;
const char *s2 = i < words_len ? exp_words[i] : NULL;
g_print (">>> [%zu]: %s - %s%s%s vs. %s%s%s\n",
i,
nm_streq0 (s1, s2) ? "same" : "diff",
NM_PRINT_FMT_QUOTE_STRING (s1),
NM_PRINT_FMT_QUOTE_STRING (s2));
}
g_assert_not_reached ();
}
g_assert_cmpint (words_len, ==, NM_PTRARRAY_LEN (tokens));
}
#define do_test_nm_utils_strsplit_set_simple(flags, str, ...) \
_do_test_nm_utils_strsplit_set_simple ((flags), (str), NM_NARG (__VA_ARGS__), NM_MAKE_STRV (__VA_ARGS__))
static void
test_nm_utils_strsplit_set (void)
{
gs_unref_ptrarray GPtrArray *words_exp = NULL;
guint test_run;
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_NONE, NULL);
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_NONE, "");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_NONE, " ");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_NONE, "a b", "a", "b");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, NULL);
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, "");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, " ", "", "");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, " ", "", "", "");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, "a ", "a", "", "");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, "a b", "a", "", "b");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, " ab b", "", "ab", "", "b");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, "ab b", "ab", "", "b");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, "abb", "abb");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, "abb bb ", "abb", "", "bb", "");
do_test_nm_utils_strsplit_set_f (NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY, "abb bcb ", "abb", "bcb", "");
do_test_nm_utils_strsplit_set (FALSE, NULL);
do_test_nm_utils_strsplit_set (FALSE, "");
do_test_nm_utils_strsplit_set (FALSE, "\n");
do_test_nm_utils_strsplit_set (TRUE, " \t\n", "\t");
do_test_nm_utils_strsplit_set (FALSE, "a", "a");
do_test_nm_utils_strsplit_set (FALSE, "a b", "a", "b");
do_test_nm_utils_strsplit_set (FALSE, "a\rb", "a\rb");
do_test_nm_utils_strsplit_set (FALSE, " a\rb ", "a\rb");
do_test_nm_utils_strsplit_set (FALSE, " a bbbd afds ere", "a", "bbbd", "afds", "ere");
do_test_nm_utils_strsplit_set (FALSE,
"1 2 3 4 5 6 7 8 9 0 "
"1 2 3 4 5 6 7 8 9 0 "
"1 2 3 4 5 6 7 8 9 0",
"1", "2", "3", "4", "5", "6", "7", "8", "9", "0",
"1", "2", "3", "4", "5", "6", "7", "8", "9", "0",
"1", "2", "3", "4", "5", "6", "7", "8", "9", "0");
do_test_nm_utils_strsplit_set (TRUE, "\\", "\\");
do_test_nm_utils_strsplit_set (TRUE, "\\ ", "\\ ");
do_test_nm_utils_strsplit_set (TRUE, "\\\\", "\\\\");
do_test_nm_utils_strsplit_set (TRUE, "\\\t", "\\\t");
do_test_nm_utils_strsplit_set (TRUE, "foo\\", "foo\\");
do_test_nm_utils_strsplit_set (TRUE, "bar foo\\", "bar", "foo\\");
do_test_nm_utils_strsplit_set (TRUE, "\\ a b\\ \\ c", "\\ a", "b\\ \\ ", "c");
words_exp = g_ptr_array_new_with_free_func (g_free);
for (test_run = 0; test_run < 100; test_run++) {
gboolean f_allow_escaping = nmtst_get_rand_bool ();
guint words_len = nmtst_get_rand_uint32 () % 100;
gs_free char *str = NULL;
guint i;
g_ptr_array_set_size (words_exp, 0);
for (i = 0; i < words_len; i++) {
guint word_len;
char *word;
guint j;
word_len = nmtst_get_rand_uint32 ();
if ((word_len % 100) < 30)
word_len = 0;
else
word_len = (word_len >> 10) % 100;
word = g_new (char, word_len + 3);
for (j = 0; j < word_len; ) {
guint32 p = nmtst_get_rand_uint32 ();
static const char delimiters_arr[] = { DELIMITERS_C };
static const char regular_chars[] = "abcdefghijklmnopqrstuvwxyz";
if ( !f_allow_escaping
|| (p % 1000) < 700) {
if (((p >> 20) % 100) < 20)
word[j++] = '\\';
word[j++] = regular_chars[(p >> 11) % (G_N_ELEMENTS (regular_chars) - 1)];
continue;
}
word[j++] = '\\';
word[j++] = delimiters_arr[(p >> 11) % G_N_ELEMENTS (delimiters_arr)];
}
word[j] = '\0';
g_ptr_array_add (words_exp, word);
}
g_ptr_array_add (words_exp, NULL);
str = g_strjoinv (" ", (char **) words_exp->pdata);
if ( str[0] == '\0'
&& words_len > 0) {
g_assert (words_len == 1);
g_assert_cmpstr (words_exp->pdata[0], ==, "");
words_len = 0;
}
_do_test_nm_utils_strsplit_set_f ( (f_allow_escaping ? NM_UTILS_STRSPLIT_SET_FLAGS_ALLOW_ESCAPING : NM_UTILS_STRSPLIT_SET_FLAGS_NONE)
| NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY,
str,
words_len,
(const char *const*) words_exp->pdata);
}
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED, "\t", "\t");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED | NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP, "\t");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED | NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP | NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY,
"\t", "");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED | NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP | NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY,
"\t\\\t\t\t\\\t", "\t\t\t\t");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED, "\ta", "\ta");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED | NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP, "\ta", "a");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED, "\ta\\ b\t\\ ", "\ta b\t ");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED | NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP, "\ta\\ b\t\\ \t", "a b\t ");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED, "a\\ b", "a ", "b");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED, "\ta\\ b", "\ta ", "b");
do_test_nm_utils_strsplit_set_simple (NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED | NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP, "\ta\\ b", "a ", "b");
}
/*****************************************************************************/
static char *
_escaped_tokens_create_random_word_full (const char *const*tokens,
gsize n_tokens,
gsize len)
{
GString *gstr = g_string_new (NULL);
gsize i;
char random_token[2] = { 0 };
for (i = 0; i < len; i++) {
const char *token = tokens[nmtst_get_rand_uint32 () % n_tokens];
if (!token[0]) {
do {
random_token[0] = nmtst_get_rand_uint32 ();
} while (random_token[0] == '\0');
token = random_token;
}
g_string_append (gstr, token);
}
/* reallocate the string, so that we don't have any excess memory from
* the GString buffer. This is so that valgrind may better detect an out
* or range access. */
return nm_str_realloc (g_string_free (gstr, FALSE));
}
/* set to 1 to exclude characters that are annoying to see in the debugger
* and printf() output. */
#define ESCAPED_TOKENS_ONLY_NICE_CHARS 0
static char *
_escaped_tokens_create_random_whitespace (void)
{
static const char *tokens[] = {
" ",
#if !ESCAPED_TOKENS_ONLY_NICE_CHARS
"\n",
"\t",
"\r",
"\f",
#endif
};
return _escaped_tokens_create_random_word_full (tokens, G_N_ELEMENTS (tokens), nmtst_get_rand_word_length (NULL) / 4u);
}
static char *
_escaped_tokens_create_random_word (void)
{
static const char *tokens[] = {
"a",
"b",
"c",
" ",
",",
"=",
"\\",
#if !ESCAPED_TOKENS_ONLY_NICE_CHARS
"\n",
"\f",
":",
"",
#endif
};
return _escaped_tokens_create_random_word_full (tokens, G_N_ELEMENTS (tokens), nmtst_get_rand_word_length (NULL));
}
static void
_escaped_tokens_str_append_delimiter (GString *str,
gboolean strict,
gboolean needs_delimiter)
{
guint len = nmtst_get_rand_word_length (NULL) / 10u;
char *s;
again:
if (!strict) {
g_string_append (str, (s = _escaped_tokens_create_random_whitespace ()));
nm_clear_g_free (&s);
}
if (needs_delimiter)
g_string_append_c (str, ',');
if (!strict) {
g_string_append (str, (s = _escaped_tokens_create_random_whitespace ()));
nm_clear_g_free (&s);
if (len-- > 0) {
needs_delimiter = TRUE;
goto again;
}
}
}
static void
_escaped_tokens_split (char *str, const char **out_key, const char **out_val)
{
const char *key;
const char *val;
gsize len = strlen (str);
g_assert (str);
nm_utils_escaped_tokens_options_split (str, &key, &val);
g_assert (key);
g_assert (key == str);
if (val) {
g_assert (val > str);
g_assert (val > key);
g_assert (val <= &str[len]);
}
NM_SET_OUT (out_key, key);
NM_SET_OUT (out_val, val);
}
static void
_escaped_tokens_combine (GString *combined,
const char *key,
const char *val,
gboolean strict,
gboolean allow_append_delimiter_before,
gboolean needs_delimiter_after)
{
gs_free char *escaped_key = NULL;
gs_free char *escaped_val = NULL;
if (allow_append_delimiter_before)
_escaped_tokens_str_append_delimiter (combined, strict, FALSE);
g_string_append (combined, nm_utils_escaped_tokens_options_escape_key (key, &escaped_key));
if (val) {
char *s;
if (!strict) {
g_string_append (combined, (s = _escaped_tokens_create_random_whitespace ()));
nm_clear_g_free (&s);
}
g_string_append_c (combined, '=');
if (!strict) {
g_string_append (combined, (s = _escaped_tokens_create_random_whitespace ()));
nm_clear_g_free (&s);
}
g_string_append (combined, nm_utils_escaped_tokens_options_escape_val (val, &escaped_val));
}
_escaped_tokens_str_append_delimiter (combined, strict, needs_delimiter_after);
}
static void
_escaped_tokens_check_one_impl (const char *expected_key,
const char *expected_val,
const char *expected_combination,
const char *const*other,
gsize n_other)
{
nm_auto_free_gstring GString *combined = g_string_new (NULL);
gsize i;
g_assert (expected_key);
g_assert (expected_combination);
g_assert (other);
_escaped_tokens_combine (combined,
expected_key,
expected_val,
TRUE,
TRUE,
FALSE);
g_assert_cmpstr (combined->str, ==, expected_combination);
for (i = 0; i < n_other + 2u; i++) {
nm_auto_free_gstring GString *str0 = NULL;
gs_free const char **strv_split = NULL;
gs_free char *strv_split0 = NULL;
const char *comb;
const char *key;
const char *val;
if (i == 0)
comb = expected_combination;
else if (i == 1) {
_escaped_tokens_combine (nm_gstring_prepare (&str0),
expected_key,
expected_val,
FALSE,
TRUE,
FALSE);
comb = str0->str;
} else
comb = other[i - 2];
strv_split = nm_utils_escaped_tokens_options_split_list (comb);
if (!strv_split) {
g_assert_cmpstr (expected_key, ==, "");
g_assert_cmpstr (expected_val, ==, NULL);
continue;
}
g_assert (expected_val || expected_key[0]);
g_assert_cmpuint (NM_PTRARRAY_LEN (strv_split), ==, 1u);
strv_split0 = g_strdup (strv_split[0]);
_escaped_tokens_split (strv_split0, &key, &val);
g_assert_cmpstr (key, ==, expected_key);
g_assert_cmpstr (val, ==, expected_val);
}
}
#define _escaped_tokens_check_one(expected_key, expected_val, expected_combination, ...) \
_escaped_tokens_check_one_impl (expected_key, expected_val, expected_combination, NM_MAKE_STRV (__VA_ARGS__), NM_NARG (__VA_ARGS__))
static void
test_nm_utils_escaped_tokens (void)
{
int i_run;
for (i_run = 0; i_run < 1000; i_run++) {
const guint num_options = nmtst_get_rand_word_length (NULL);
gs_unref_ptrarray GPtrArray *options = g_ptr_array_new_with_free_func (g_free);
nm_auto_free_gstring GString *combined = g_string_new (NULL);
gs_free const char **strv_split = NULL;
guint i_option;
guint i;
/* Generate a list of random words for option key-value pairs. */
for (i_option = 0; i_option < 2u * num_options; i_option++) {
char *word = NULL;
if ( i_option % 2u == 1
&& nmtst_get_rand_uint32 () % 5 == 0
&& strlen (options->pdata[options->len - 1]) > 0u) {
/* For some options, leave the value unset and only generate a key.
*
* If key is "", then we cannot do that, because the test below would try
* to append "" to the combined list, which the parser then would drop.
* Only test omitting the value, if strlen() of the key is positive. */
} else
word = _escaped_tokens_create_random_word ();
g_ptr_array_add (options, word);
}
/* Combine the options in one comma separated list, with proper escaping. */
for (i_option = 0; i_option < num_options; i_option++) {
_escaped_tokens_combine (combined,
options->pdata[2u*i_option + 0u],
options->pdata[2u*i_option + 1u],
FALSE,
i_option == 0,
i_option != num_options - 1);
}
/* ensure that we can split and parse the options without difference. */
strv_split = nm_utils_escaped_tokens_options_split_list (combined->str);
for (i_option = 0; i_option < num_options; i_option++) {
const char *expected_key = options->pdata[2u*i_option + 0u];
const char *expected_val = options->pdata[2u*i_option + 1u];
gs_free char *s_split = i_option < NM_PTRARRAY_LEN (strv_split) ? g_strdup (strv_split[i_option]) : NULL;
const char *key = NULL;
const char *val = NULL;
if (s_split)
_escaped_tokens_split (s_split, &key, &val);
if ( !nm_streq0 (key, expected_key)
|| !nm_streq0 (val, expected_val)) {
g_print (">>> ASSERTION IS ABOUT TO FAIL for item %5d of %5d\n", i_option, num_options);
g_print (">>> combined = \"%s\"\n", combined->str);
g_print (">>> %c parsed[%5d].key = \"%s\"\n", nm_streq (key, expected_key) ? ' ' : 'X', i_option, key);
g_print (">>> %c parsed[%5d].val = %s%s%s\n", nm_streq0 (val, expected_val) ? ' ' : 'X', i_option, NM_PRINT_FMT_QUOTE_STRING (val));
for (i = 0; i < num_options; i++) {
g_print (">>> %c original[%5d].key = \"%s\"\n", i == i_option ? '*' : ' ', i, (char *) options->pdata[2u*i + 0u]);
g_print (">>> %c original[%5d].val = %s%s%s\n", i == i_option ? '*' : ' ', i, NM_PRINT_FMT_QUOTE_STRING ((char *) options->pdata[2u*i + 1u]));
}
for (i = 0; i < NM_PTRARRAY_LEN (strv_split); i++)
g_print (">>> split[%5d] = \"%s\"\n", i, strv_split[i]);
}
g_assert_cmpstr (key, ==, expected_key);
g_assert_cmpstr (val, ==, expected_val);
}
g_assert_cmpint (NM_PTRARRAY_LEN (strv_split), ==, num_options);
/* Above we show a full round-trip of random option key-value pairs, that they can
* without loss escape, concatenate, split-list, and split. This proofed that every
* option key-value pair can be represented as a combined string and parsed back.
*
* Now, just check that we can also parse arbitrary random words in nm_utils_escaped_tokens_options_split().
* split() is a non-injective surjective function. As we check the round-trip above for random words, where
* options-split() is the last step, we show that every random word can be the output of the function
* (which shows, the surjective part).
*
* But multiple random input arguments, may map to the same output argument (non-injective).
* Just test whether we can handle random input words without crashing. For that, just use the
* above generate list of random words.
*/
for (i = 0; i < 1u + 2u * i_option; i++) {
gs_free char *str = NULL;
const char *cstr;
if (i == 0)
cstr = combined->str;
else
cstr = options->pdata[i - 1u];
if (!cstr)
continue;
str = g_strdup (cstr);
_escaped_tokens_split (str, NULL, NULL);
}
}
_escaped_tokens_check_one ("", NULL, "");
_escaped_tokens_check_one ("", "", "=", " =");
_escaped_tokens_check_one ("a", "b", "a=b", "a = b");
_escaped_tokens_check_one ("a\\=", "b\\=", "a\\\\\\==b\\\\=", "a\\\\\\==b\\\\\\=");
_escaped_tokens_check_one ("\\=", "\\=", "\\\\\\==\\\\=", "\\\\\\==\\\\\\=");
_escaped_tokens_check_one (" ", "bb=", "\\ =bb=", "\\ =bb\\=");
_escaped_tokens_check_one (" ", "bb\\=", "\\ =bb\\\\=", "\\ =bb\\\\\\=");
_escaped_tokens_check_one ("a b", "a b", "a b=a b");
_escaped_tokens_check_one ("a b", "a b", "a b=a b");
_escaped_tokens_check_one ("a = b", "a = b", "a \\= b=a = b", "a \\= b=a \\= b");
}
/*****************************************************************************/
typedef struct {
int val;
CList lst;
} CListSort;
static int
_c_list_sort_cmp (const CList *lst_a, const CList *lst_b, const void *user_data)
{
const CListSort *a, *b;
g_assert (lst_a);
g_assert (lst_b);
g_assert (lst_a != lst_b);
a = c_list_entry (lst_a, CListSort, lst);
b = c_list_entry (lst_b, CListSort, lst);
if (a->val < b->val)
return -1;
if (a->val > b->val)
return 1;
return 0;
}
static void
_do_test_c_list_sort (CListSort *elements, guint n_list, gboolean headless)
{
CList head, *iter, *iter_prev, *lst;
guint i;
const CListSort *el_prev;
CListSort *el;
c_list_init (&head);
for (i = 0; i < n_list; i++) {
el = &elements[i];
el->val = nmtst_get_rand_uint32 () % (2*n_list);
c_list_link_tail (&head, &el->lst);
}
if (headless) {
lst = head.next;
c_list_unlink_stale (&head);
lst = c_list_sort_headless (lst, _c_list_sort_cmp, NULL);
g_assert (lst);
g_assert (lst->next);
g_assert (lst->prev);
g_assert (c_list_length (lst) == n_list - 1);
iter_prev = lst->prev;
for (iter = lst; iter != lst; iter = iter->next) {
g_assert (iter);
g_assert (iter->next);
g_assert (iter->prev == iter_prev);
}
c_list_link_before (lst, &head);
} else
c_list_sort (&head, _c_list_sort_cmp, NULL);
g_assert (!c_list_is_empty (&head));
g_assert (c_list_length (&head) == n_list);
el_prev = NULL;
c_list_for_each (iter, &head) {
el = c_list_entry (iter, CListSort, lst);
g_assert (el >= elements && el < &elements[n_list]);
if (el_prev) {
if (el_prev->val == el->val)
g_assert (el_prev < el);
else
g_assert (el_prev->val < el->val);
g_assert (iter->prev == &el_prev->lst);
g_assert (el_prev->lst.next == iter);
}
el_prev = el;
}
g_assert (head.prev == &el_prev->lst);
}
static void
test_c_list_sort (void)
{
const guint N_ELEMENTS = 10000;
guint n_list, repeat;
gs_free CListSort *elements = NULL;
{
CList head;
c_list_init (&head);
c_list_sort (&head, _c_list_sort_cmp, NULL);
g_assert (c_list_length (&head) == 0);
g_assert (c_list_is_empty (&head));
}
elements = g_new0 (CListSort, N_ELEMENTS);
for (n_list = 1; n_list < N_ELEMENTS; n_list++) {
if (n_list > 150) {
n_list += nmtst_get_rand_uint32 () % n_list;
if (n_list >= N_ELEMENTS)
break;
}
{
const guint N_REPEAT = n_list > 50 ? 1 : 5;
for (repeat = 0; repeat < N_REPEAT; repeat++)
_do_test_c_list_sort (elements, n_list, nmtst_get_rand_uint32 () % 2);
}
}
}
/*****************************************************************************/
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
typedef struct {
NMDedupMultiObj parent;
guint val;
guint other;
} DedupObj;
static const NMDedupMultiObjClass dedup_obj_class;
static DedupObj *
_dedup_obj_assert (const NMDedupMultiObj *obj)
{
DedupObj *o;
g_assert (obj);
o = (DedupObj *) obj;
g_assert (o->parent.klass == &dedup_obj_class);
2017-07-02 23:46:06 +02:00
g_assert (o->parent._ref_count > 0);
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
g_assert (o->val > 0);
return o;
}
2017-07-02 23:46:06 +02:00
static const NMDedupMultiObj *
_dedup_obj_clone (const NMDedupMultiObj *obj)
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
{
DedupObj *o, *o2;
o = _dedup_obj_assert (obj);
2017-07-02 23:46:06 +02:00
o2 = g_slice_new0 (DedupObj);
o2->parent.klass = &dedup_obj_class;
o2->parent._ref_count = 1;
o2->val = o->val;
o2->other = o->other;
return (NMDedupMultiObj *) o2;
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
}
static void
2017-07-02 23:46:06 +02:00
_dedup_obj_destroy (NMDedupMultiObj *obj)
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
{
2017-07-02 23:46:06 +02:00
DedupObj *o = (DedupObj *) obj;
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
2017-07-02 23:46:06 +02:00
nm_assert (o->parent._ref_count == 0);
o->parent._ref_count = 1;
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
o = _dedup_obj_assert (obj);
2017-07-02 23:46:06 +02:00
g_slice_free (DedupObj, o);
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
}
static void
_dedup_obj_full_hash_update (const NMDedupMultiObj *obj, NMHashState *h)
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
{
const DedupObj *o;
o = _dedup_obj_assert (obj);
nm_hash_update_vals (h,
o->val,
o->other);
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
}
static gboolean
_dedup_obj_full_equal (const NMDedupMultiObj *obj_a,
const NMDedupMultiObj *obj_b)
{
const DedupObj *o_a = _dedup_obj_assert (obj_a);
const DedupObj *o_b = _dedup_obj_assert (obj_b);
return o_a->val == o_b->val
&& o_a->other == o_b->other;
}
static const NMDedupMultiObjClass dedup_obj_class = {
2017-07-02 23:46:06 +02:00
.obj_clone = _dedup_obj_clone,
.obj_destroy = _dedup_obj_destroy,
.obj_full_hash_update = _dedup_obj_full_hash_update,
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
.obj_full_equal = _dedup_obj_full_equal,
};
#define DEDUP_OBJ_INIT(val_val, other_other) \
(&((DedupObj) { \
.parent = { \
.klass = &dedup_obj_class, \
2017-07-02 23:46:06 +02:00
._ref_count = NM_OBJ_REF_COUNT_STACKINIT, \
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
}, \
.val = (val_val), \
.other = (other_other), \
}))
typedef struct {
NMDedupMultiIdxType parent;
guint partition_size;
guint val_mod;
} DedupIdxType;
static const NMDedupMultiIdxTypeClass dedup_idx_type_class;
static const DedupIdxType *
_dedup_idx_assert (const NMDedupMultiIdxType *idx_type)
{
DedupIdxType *t;
g_assert (idx_type);
t = (DedupIdxType *) idx_type;
g_assert (t->parent.klass == &dedup_idx_type_class);
g_assert (t->partition_size > 0);
g_assert (t->val_mod > 0);
return t;
}
static void
_dedup_idx_obj_id_hash_update (const NMDedupMultiIdxType *idx_type,
const NMDedupMultiObj *obj,
NMHashState *h)
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
{
const DedupIdxType *t;
const DedupObj *o;
t = _dedup_idx_assert (idx_type);
o = _dedup_obj_assert (obj);
nm_hash_update_val (h, o->val / t->partition_size);
nm_hash_update_val (h, o->val % t->val_mod);
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
}
static gboolean
_dedup_idx_obj_id_equal (const NMDedupMultiIdxType *idx_type,
const NMDedupMultiObj *obj_a,
const NMDedupMultiObj *obj_b)
{
const DedupIdxType *t;
const DedupObj *o_a;
const DedupObj *o_b;
t = _dedup_idx_assert (idx_type);
o_a = _dedup_obj_assert (obj_a);
o_b = _dedup_obj_assert (obj_b);
return (o_a->val / t->partition_size) == (o_b->val / t->partition_size)
&& (o_a->val % t->val_mod) == (o_b->val % t->val_mod);
}
static void
_dedup_idx_obj_partition_hash_update (const NMDedupMultiIdxType *idx_type,
const NMDedupMultiObj *obj,
NMHashState *h)
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
{
const DedupIdxType *t;
const DedupObj *o;
t = _dedup_idx_assert (idx_type);
o = _dedup_obj_assert (obj);
nm_hash_update_val (h, o->val / t->partition_size);
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
}
static gboolean
_dedup_idx_obj_partition_equal (const NMDedupMultiIdxType *idx_type,
const NMDedupMultiObj *obj_a,
const NMDedupMultiObj *obj_b)
{
const DedupIdxType *t;
const DedupObj *o_a;
const DedupObj *o_b;
t = _dedup_idx_assert (idx_type);
o_a = _dedup_obj_assert (obj_a);
o_b = _dedup_obj_assert (obj_b);
return (o_a->val / t->partition_size) == (o_b->val / t->partition_size);
}
static const NMDedupMultiIdxTypeClass dedup_idx_type_class = {
.idx_obj_id_hash_update = _dedup_idx_obj_id_hash_update,
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
.idx_obj_id_equal = _dedup_idx_obj_id_equal,
.idx_obj_partition_hash_update = _dedup_idx_obj_partition_hash_update,
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
.idx_obj_partition_equal = _dedup_idx_obj_partition_equal,
};
static const DedupIdxType *
DEDUP_IDX_TYPE_INIT (DedupIdxType *idx_type, guint partition_size, guint val_mod)
{
nm_dedup_multi_idx_type_init ((NMDedupMultiIdxType *) idx_type, &dedup_idx_type_class);
idx_type->val_mod = val_mod;
idx_type->partition_size = partition_size;
return idx_type;
}
static gboolean
_dedup_idx_add (NMDedupMultiIndex *idx, const DedupIdxType *idx_type, const DedupObj *obj, NMDedupMultiIdxMode mode, const NMDedupMultiEntry **out_entry)
{
g_assert (idx);
_dedup_idx_assert ((NMDedupMultiIdxType *) idx_type);
if (obj)
_dedup_obj_assert ((NMDedupMultiObj *) obj);
return nm_dedup_multi_index_add (idx, (NMDedupMultiIdxType *) idx_type,
obj, mode, out_entry, NULL);
}
static void
_dedup_head_entry_assert (const NMDedupMultiHeadEntry *entry)
{
g_assert (entry);
g_assert (entry->len > 0);
g_assert (entry->len == c_list_length (&entry->lst_entries_head));
g_assert (entry->idx_type);
g_assert (entry->is_head);
}
static const DedupObj *
_dedup_entry_assert (const NMDedupMultiEntry *entry)
{
g_assert (entry);
g_assert (!c_list_is_empty (&entry->lst_entries));
g_assert (entry->head);
g_assert (!entry->is_head);
g_assert (entry->head != (gpointer) entry);
_dedup_head_entry_assert (entry->head);
2017-07-02 23:46:06 +02:00
return _dedup_obj_assert (entry->obj);
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
}
static const DedupIdxType *
_dedup_entry_get_idx_type (const NMDedupMultiEntry *entry)
{
_dedup_entry_assert (entry);
g_assert (entry->head);
g_assert (entry->head->idx_type);
return _dedup_idx_assert (entry->head->idx_type);
}
static void
_dedup_entry_assert_all (const NMDedupMultiEntry *entry, gssize expected_idx, const DedupObj *const*expected_obj)
{
gsize n, i;
CList *iter;
g_assert (entry);
_dedup_entry_assert (entry);
g_assert (expected_obj);
n = NM_PTRARRAY_LEN (expected_obj);
g_assert (n == c_list_length (&entry->lst_entries));
g_assert (expected_idx >= -1 && expected_idx < n);
g_assert (entry->head);
if (expected_idx == -1)
g_assert (entry->head == (gpointer) entry);
else
g_assert (entry->head != (gpointer) entry);
i = 0;
c_list_for_each (iter, &entry->head->lst_entries_head) {
const NMDedupMultiEntry *entry_current = c_list_entry (iter, NMDedupMultiEntry, lst_entries);
const DedupObj *obj_current;
const DedupIdxType *idx_type = _dedup_entry_get_idx_type (entry_current);
obj_current = _dedup_entry_assert (entry_current);
g_assert (obj_current);
g_assert (i < n);
if (expected_idx == i)
g_assert (entry_current == entry);
g_assert (idx_type->parent.klass->idx_obj_partition_equal (&idx_type->parent,
2017-07-02 23:46:06 +02:00
entry_current->obj,
c_list_entry (entry->head->lst_entries_head.next, NMDedupMultiEntry, lst_entries)->obj));
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
i++;
}
}
#define _dedup_entry_assert_all(entry, expected_idx, ...) _dedup_entry_assert_all (entry, expected_idx, (const DedupObj *const[]) { __VA_ARGS__, NULL })
static void
test_dedup_multi (void)
{
NMDedupMultiIndex *idx;
DedupIdxType IDX_20_3_a_stack;
const DedupIdxType *const IDX_20_3_a = DEDUP_IDX_TYPE_INIT (&IDX_20_3_a_stack, 20, 3);
const NMDedupMultiEntry *entry1;
idx = nm_dedup_multi_index_new ();
g_assert (_dedup_idx_add (idx, IDX_20_3_a, DEDUP_OBJ_INIT (1, 1), NM_DEDUP_MULTI_IDX_MODE_APPEND, &entry1));
_dedup_entry_assert_all (entry1, 0, DEDUP_OBJ_INIT (1, 1));
2017-07-02 23:46:06 +02:00
g_assert (nm_dedup_multi_index_obj_find (idx, (NMDedupMultiObj *) DEDUP_OBJ_INIT (1, 1)));
g_assert (!nm_dedup_multi_index_obj_find (idx, (NMDedupMultiObj *) DEDUP_OBJ_INIT (1, 2)));
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
g_assert (_dedup_idx_add (idx, IDX_20_3_a, DEDUP_OBJ_INIT (1, 2), NM_DEDUP_MULTI_IDX_MODE_APPEND, &entry1));
_dedup_entry_assert_all (entry1, 0, DEDUP_OBJ_INIT (1, 2));
2017-07-02 23:46:06 +02:00
g_assert (!nm_dedup_multi_index_obj_find (idx, (NMDedupMultiObj *) DEDUP_OBJ_INIT (1, 1)));
g_assert (nm_dedup_multi_index_obj_find (idx, (NMDedupMultiObj *) DEDUP_OBJ_INIT (1, 2)));
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
g_assert (_dedup_idx_add (idx, IDX_20_3_a, DEDUP_OBJ_INIT (2, 2), NM_DEDUP_MULTI_IDX_MODE_APPEND, &entry1));
_dedup_entry_assert_all (entry1, 1, DEDUP_OBJ_INIT (1, 2), DEDUP_OBJ_INIT (2, 2));
nm_dedup_multi_index_unref (idx);
}
/*****************************************************************************/
static NMConnection *
_connection_new_from_dbus (GVariant *dict, GError **error)
{
return _nm_simple_connection_new_from_dbus (dict, NM_SETTING_PARSE_FLAGS_NORMALIZE, error);
}
static void
vpn_check_func (const char *key, const char *value, gpointer user_data)
{
if (!strcmp (key, "foobar1")) {
g_assert_cmpstr (value, ==, "blahblah1");
return;
}
if (!strcmp (key, "foobar2")) {
g_assert_cmpstr (value, ==, "blahblah2");
return;
}
if (!strcmp (key, "foobar3")) {
g_assert_cmpstr (value, ==, "blahblah3");
return;
}
if (!strcmp (key, "foobar4")) {
g_assert_cmpstr (value, ==, "blahblah4");
return;
}
g_assert_not_reached ();
}
static void
vpn_check_empty_func (const char *key, const char *value, gpointer user_data)
{
g_assert_not_reached ();
}
static void
test_setting_vpn_items (void)
{
libnm,core: add _nm_connection_aggregate() to replace nm_connection_for_each_setting_value() We should no longer use nm_connection_for_each_setting_value() and nm_setting_for_each_value(). It's fundamentally broken as it does not work with properties that are not backed by a GObject property and it cannot be fixed because it is public API. Add an internal function _nm_connection_aggregate() to replace it. Compare the implementation of the aggregation functionality inside libnm with the previous two checks for secret-flags that it replaces: - previous approach broke abstraction and require detailed knowledge of secret flags. Meaning, they must special case NMSettingVpn and GObject-property based secrets. If we implement a new way for implementing secrets (like we will need for WireGuard), then this the new way should only affect libnm-core, not require changes elsewhere. - it's very inefficient to itereate over all settings. It involves cloning and sorting the list of settings, and retrieve and clone all GObject properties. Only to look at secret properties alone. _nm_connection_aggregate() is supposed to be more flexible then just the two new aggregate types that perform a "find-any" search. The @arg argument and boolean return value can suffice to implement different aggregation types in the future. Also fixes the check of NMAgentManager for secret flags for VPNs (NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs is a property that either has a secret or a secret-flag. The previous implementation would only look at present secrets and check their flags. It wouldn't check secret-flags that are NM_SETTING_SECRET_FLAG_NONE, but have no secret.
2019-01-04 11:28:27 +01:00
gs_unref_object NMConnection *connection = NULL;
NMSettingVpn *s_vpn;
libnm,core: add _nm_connection_aggregate() to replace nm_connection_for_each_setting_value() We should no longer use nm_connection_for_each_setting_value() and nm_setting_for_each_value(). It's fundamentally broken as it does not work with properties that are not backed by a GObject property and it cannot be fixed because it is public API. Add an internal function _nm_connection_aggregate() to replace it. Compare the implementation of the aggregation functionality inside libnm with the previous two checks for secret-flags that it replaces: - previous approach broke abstraction and require detailed knowledge of secret flags. Meaning, they must special case NMSettingVpn and GObject-property based secrets. If we implement a new way for implementing secrets (like we will need for WireGuard), then this the new way should only affect libnm-core, not require changes elsewhere. - it's very inefficient to itereate over all settings. It involves cloning and sorting the list of settings, and retrieve and clone all GObject properties. Only to look at secret properties alone. _nm_connection_aggregate() is supposed to be more flexible then just the two new aggregate types that perform a "find-any" search. The @arg argument and boolean return value can suffice to implement different aggregation types in the future. Also fixes the check of NMAgentManager for secret flags for VPNs (NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs is a property that either has a secret or a secret-flag. The previous implementation would only look at present secrets and check their flags. It wouldn't check secret-flags that are NM_SETTING_SECRET_FLAG_NONE, but have no secret.
2019-01-04 11:28:27 +01:00
connection = nmtst_create_minimal_connection ("vpn-items", NULL, NM_SETTING_VPN_SETTING_NAME, NULL);
s_vpn = nm_connection_get_setting_vpn (connection);
nm_setting_vpn_add_data_item (s_vpn, "foobar1", "blahblah1");
nm_setting_vpn_add_data_item (s_vpn, "foobar2", "blahblah2");
nm_setting_vpn_add_data_item (s_vpn, "foobar3", "blahblah3");
nm_setting_vpn_add_data_item (s_vpn, "foobar4", "blahblah4");
/* Ensure that added values are all present */
nm_setting_vpn_foreach_data_item (s_vpn, vpn_check_func, NULL);
nm_setting_vpn_remove_data_item (s_vpn, "foobar1");
nm_setting_vpn_remove_data_item (s_vpn, "foobar2");
nm_setting_vpn_remove_data_item (s_vpn, "foobar3");
nm_setting_vpn_remove_data_item (s_vpn, "foobar4");
libnm,core: add _nm_connection_aggregate() to replace nm_connection_for_each_setting_value() We should no longer use nm_connection_for_each_setting_value() and nm_setting_for_each_value(). It's fundamentally broken as it does not work with properties that are not backed by a GObject property and it cannot be fixed because it is public API. Add an internal function _nm_connection_aggregate() to replace it. Compare the implementation of the aggregation functionality inside libnm with the previous two checks for secret-flags that it replaces: - previous approach broke abstraction and require detailed knowledge of secret flags. Meaning, they must special case NMSettingVpn and GObject-property based secrets. If we implement a new way for implementing secrets (like we will need for WireGuard), then this the new way should only affect libnm-core, not require changes elsewhere. - it's very inefficient to itereate over all settings. It involves cloning and sorting the list of settings, and retrieve and clone all GObject properties. Only to look at secret properties alone. _nm_connection_aggregate() is supposed to be more flexible then just the two new aggregate types that perform a "find-any" search. The @arg argument and boolean return value can suffice to implement different aggregation types in the future. Also fixes the check of NMAgentManager for secret flags for VPNs (NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs is a property that either has a secret or a secret-flag. The previous implementation would only look at present secrets and check their flags. It wouldn't check secret-flags that are NM_SETTING_SECRET_FLAG_NONE, but have no secret.
2019-01-04 11:28:27 +01:00
g_assert (!_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SECRETS, NULL));
g_assert (!_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS, NULL));
nm_setting_vpn_add_secret (s_vpn, "foobar1", "blahblah1");
libnm,core: add _nm_connection_aggregate() to replace nm_connection_for_each_setting_value() We should no longer use nm_connection_for_each_setting_value() and nm_setting_for_each_value(). It's fundamentally broken as it does not work with properties that are not backed by a GObject property and it cannot be fixed because it is public API. Add an internal function _nm_connection_aggregate() to replace it. Compare the implementation of the aggregation functionality inside libnm with the previous two checks for secret-flags that it replaces: - previous approach broke abstraction and require detailed knowledge of secret flags. Meaning, they must special case NMSettingVpn and GObject-property based secrets. If we implement a new way for implementing secrets (like we will need for WireGuard), then this the new way should only affect libnm-core, not require changes elsewhere. - it's very inefficient to itereate over all settings. It involves cloning and sorting the list of settings, and retrieve and clone all GObject properties. Only to look at secret properties alone. _nm_connection_aggregate() is supposed to be more flexible then just the two new aggregate types that perform a "find-any" search. The @arg argument and boolean return value can suffice to implement different aggregation types in the future. Also fixes the check of NMAgentManager for secret flags for VPNs (NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs is a property that either has a secret or a secret-flag. The previous implementation would only look at present secrets and check their flags. It wouldn't check secret-flags that are NM_SETTING_SECRET_FLAG_NONE, but have no secret.
2019-01-04 11:28:27 +01:00
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SECRETS, NULL));
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS, NULL));
nm_setting_vpn_add_secret (s_vpn, "foobar2", "blahblah2");
nm_setting_vpn_add_secret (s_vpn, "foobar3", "blahblah3");
nm_setting_vpn_add_secret (s_vpn, "foobar4", "blahblah4");
/* Ensure that added values are all present */
nm_setting_vpn_foreach_secret (s_vpn, vpn_check_func, NULL);
nm_setting_vpn_remove_secret (s_vpn, "foobar1");
nm_setting_vpn_remove_secret (s_vpn, "foobar2");
nm_setting_vpn_remove_secret (s_vpn, "foobar3");
libnm,core: add _nm_connection_aggregate() to replace nm_connection_for_each_setting_value() We should no longer use nm_connection_for_each_setting_value() and nm_setting_for_each_value(). It's fundamentally broken as it does not work with properties that are not backed by a GObject property and it cannot be fixed because it is public API. Add an internal function _nm_connection_aggregate() to replace it. Compare the implementation of the aggregation functionality inside libnm with the previous two checks for secret-flags that it replaces: - previous approach broke abstraction and require detailed knowledge of secret flags. Meaning, they must special case NMSettingVpn and GObject-property based secrets. If we implement a new way for implementing secrets (like we will need for WireGuard), then this the new way should only affect libnm-core, not require changes elsewhere. - it's very inefficient to itereate over all settings. It involves cloning and sorting the list of settings, and retrieve and clone all GObject properties. Only to look at secret properties alone. _nm_connection_aggregate() is supposed to be more flexible then just the two new aggregate types that perform a "find-any" search. The @arg argument and boolean return value can suffice to implement different aggregation types in the future. Also fixes the check of NMAgentManager for secret flags for VPNs (NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs is a property that either has a secret or a secret-flag. The previous implementation would only look at present secrets and check their flags. It wouldn't check secret-flags that are NM_SETTING_SECRET_FLAG_NONE, but have no secret.
2019-01-04 11:28:27 +01:00
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SECRETS, NULL));
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS, NULL));
nm_setting_vpn_add_data_item (s_vpn, "foobar4-flags", "blahblah4");
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS, NULL));
nm_setting_vpn_add_data_item (s_vpn, "foobar4-flags", "2");
g_assert (!_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS, NULL));
nm_setting_vpn_remove_secret (s_vpn, "foobar4");
libnm,core: add _nm_connection_aggregate() to replace nm_connection_for_each_setting_value() We should no longer use nm_connection_for_each_setting_value() and nm_setting_for_each_value(). It's fundamentally broken as it does not work with properties that are not backed by a GObject property and it cannot be fixed because it is public API. Add an internal function _nm_connection_aggregate() to replace it. Compare the implementation of the aggregation functionality inside libnm with the previous two checks for secret-flags that it replaces: - previous approach broke abstraction and require detailed knowledge of secret flags. Meaning, they must special case NMSettingVpn and GObject-property based secrets. If we implement a new way for implementing secrets (like we will need for WireGuard), then this the new way should only affect libnm-core, not require changes elsewhere. - it's very inefficient to itereate over all settings. It involves cloning and sorting the list of settings, and retrieve and clone all GObject properties. Only to look at secret properties alone. _nm_connection_aggregate() is supposed to be more flexible then just the two new aggregate types that perform a "find-any" search. The @arg argument and boolean return value can suffice to implement different aggregation types in the future. Also fixes the check of NMAgentManager for secret flags for VPNs (NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs is a property that either has a secret or a secret-flag. The previous implementation would only look at present secrets and check their flags. It wouldn't check secret-flags that are NM_SETTING_SECRET_FLAG_NONE, but have no secret.
2019-01-04 11:28:27 +01:00
g_assert (!_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SECRETS, NULL));
g_assert (!_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS, NULL));
nm_setting_vpn_remove_data_item (s_vpn, "foobar4-flags");
/* Try to add some blank values and make sure they are rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (key && key[0]));
nm_setting_vpn_add_data_item (s_vpn, NULL, NULL);
g_test_assert_expected_messages ();
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (key && key[0]));
nm_setting_vpn_add_data_item (s_vpn, "", "");
g_test_assert_expected_messages ();
nm_setting_vpn_add_data_item (s_vpn, "foobar1", "");
g_assert_cmpstr (nm_setting_vpn_get_data_item (s_vpn, "foobar1"), ==, "");
nm_setting_vpn_add_data_item (s_vpn, "foobar1", NULL);
g_assert_cmpstr (nm_setting_vpn_get_data_item (s_vpn, "foobar1"), ==, NULL);
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (key && key[0]));
nm_setting_vpn_add_data_item (s_vpn, NULL, "blahblah1");
g_test_assert_expected_messages ();
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (key && key[0]));
nm_setting_vpn_add_data_item (s_vpn, "", "blahblah1");
g_test_assert_expected_messages ();
nm_setting_vpn_foreach_data_item (s_vpn, vpn_check_empty_func, NULL);
/* Try to add some blank secrets and make sure they are rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (key && key[0]));
nm_setting_vpn_add_secret (s_vpn, NULL, NULL);
g_test_assert_expected_messages ();
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (key && key[0]));
nm_setting_vpn_add_secret (s_vpn, "", "");
g_test_assert_expected_messages ();
nm_setting_vpn_add_secret (s_vpn, "foobar1", "");
nm_setting_vpn_add_secret (s_vpn, "foobar1", NULL);
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (key && key[0]));
nm_setting_vpn_add_secret (s_vpn, NULL, "blahblah1");
g_test_assert_expected_messages ();
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (key && key[0]));
nm_setting_vpn_add_secret (s_vpn, "", "blahblah1");
g_test_assert_expected_messages ();
nm_setting_vpn_foreach_secret (s_vpn, vpn_check_empty_func, NULL);
}
static void
test_setting_vpn_update_secrets (void)
{
NMConnection *connection;
NMSettingVpn *s_vpn;
GVariantBuilder settings_builder, vpn_builder, secrets_builder;
GVariant *settings;
gboolean success;
GError *error = NULL;
const char *tmp;
const char *key1 = "foobar";
const char *key2 = "blahblah";
const char *val1 = "value1";
const char *val2 = "value2";
connection = nm_simple_connection_new ();
s_vpn = (NMSettingVpn *) nm_setting_vpn_new ();
nm_connection_add_setting (connection, NM_SETTING (s_vpn));
g_variant_builder_init (&settings_builder, NM_VARIANT_TYPE_CONNECTION);
g_variant_builder_init (&vpn_builder, NM_VARIANT_TYPE_SETTING);
g_variant_builder_init (&secrets_builder, G_VARIANT_TYPE ("a{ss}"));
g_variant_builder_add (&secrets_builder, "{ss}", key1, val1);
g_variant_builder_add (&secrets_builder, "{ss}", key2, val2);
g_variant_builder_add (&vpn_builder, "{sv}",
NM_SETTING_VPN_SECRETS,
g_variant_builder_end (&secrets_builder));
g_variant_builder_add (&settings_builder, "{sa{sv}}",
NM_SETTING_VPN_SETTING_NAME,
&vpn_builder);
settings = g_variant_builder_end (&settings_builder);
success = nm_connection_update_secrets (connection, NM_SETTING_VPN_SETTING_NAME, settings, &error);
g_assert_no_error (error);
g_assert (success);
/* Read the secrets back out */
tmp = nm_setting_vpn_get_secret (s_vpn, key1);
g_assert (tmp);
g_assert_cmpstr (tmp, ==, val1);
tmp = nm_setting_vpn_get_secret (s_vpn, key2);
g_assert (tmp);
g_assert_cmpstr (tmp, ==, val2);
g_variant_unref (settings);
g_object_unref (connection);
}
#define TO_DEL_NUM 50
typedef struct {
NMSettingVpn *s_vpn;
char *to_del[TO_DEL_NUM];
guint called;
} IterInfo;
static void
del_iter_func (const char *key, const char *value, gpointer user_data)
{
IterInfo *info = user_data;
int i;
/* Record how many times this function gets called; it should get called
* exactly as many times as there are keys in the hash table, regardless
* of what keys we delete from the table.
*/
info->called++;
/* During the iteration, remove a bunch of stuff from the table */
if (info->called == 1) {
for (i = 0; i < TO_DEL_NUM; i++)
nm_setting_vpn_remove_data_item (info->s_vpn, info->to_del[i]);
}
}
static void
test_setting_vpn_modify_during_foreach (void)
{
NMSettingVpn *s_vpn;
IterInfo info;
char *key, *val;
int i, u = 0;
s_vpn = (NMSettingVpn *) nm_setting_vpn_new ();
g_assert (s_vpn);
for (i = 0; i < TO_DEL_NUM * 2; i++) {
key = g_strdup_printf ("adsfasdfadf%d", i);
val = g_strdup_printf ("42263236236awt%d", i);
nm_setting_vpn_add_data_item (s_vpn, key, val);
/* Cache some keys to delete */
if (i % 2)
info.to_del[u++] = g_strdup (key);
g_free (key);
g_free (val);
}
/* Iterate over current table keys */
info.s_vpn = s_vpn;
info.called = 0;
nm_setting_vpn_foreach_data_item (s_vpn, del_iter_func, &info);
/* Make sure all the things we removed during iteration are really gone */
for (i = 0; i < TO_DEL_NUM; i++) {
g_assert_cmpstr (nm_setting_vpn_get_data_item (s_vpn, info.to_del[i]), ==, NULL);
g_free (info.to_del[i]);
}
/* And make sure the foreach callback was called the same number of times
* as there were keys in the table at the beginning of the foreach.
*/
g_assert_cmpint (info.called, ==, TO_DEL_NUM * 2);
g_object_unref (s_vpn);
}
static void
test_setting_ip4_config_labels (void)
{
NMSettingIPConfig *s_ip4;
NMIPAddress *addr;
GVariant *label;
GPtrArray *addrs;
char **labels;
NMConnection *conn;
GVariant *dict, *dict2, *setting_dict, *value;
GError *error = NULL;
s_ip4 = (NMSettingIPConfig *) nm_setting_ip4_config_new ();
g_object_set (G_OBJECT (s_ip4),
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_MANUAL,
NULL);
/* addr 1 */
addr = nm_ip_address_new (AF_INET, "1.2.3.4", 24, &error);
g_assert_no_error (error);
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
nmtst_assert_setting_verifies (NM_SETTING (s_ip4));
addr = nm_setting_ip_config_get_address (s_ip4, 0);
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label == NULL);
/* The 'address-labels' property should be omitted from the serialization if
* there are no non-NULL labels.
*/
conn = nmtst_create_minimal_connection ("label test", NULL, NM_SETTING_WIRED_SETTING_NAME, NULL);
nm_connection_add_setting (conn, nm_setting_duplicate (NM_SETTING (s_ip4)));
dict = nm_connection_to_dbus (conn, NM_CONNECTION_SERIALIZE_ALL);
g_object_unref (conn);
setting_dict = g_variant_lookup_value (dict, NM_SETTING_IP4_CONFIG_SETTING_NAME, NM_VARIANT_TYPE_SETTING);
g_assert (setting_dict != NULL);
value = g_variant_lookup_value (setting_dict, "address-labels", NULL);
g_assert (value == NULL);
g_variant_unref (setting_dict);
g_variant_unref (dict);
/* Now back to constructing the original s_ip4... */
/* addr 2 */
addr = nm_ip_address_new (AF_INET, "2.3.4.5", 24, &error);
g_assert_no_error (error);
nm_ip_address_set_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL, g_variant_new_string ("eth0:1"));
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
nmtst_assert_setting_verifies (NM_SETTING (s_ip4));
addr = nm_setting_ip_config_get_address (s_ip4, 1);
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label != NULL);
g_assert_cmpstr (g_variant_get_string (label, NULL), ==, "eth0:1");
/* addr 3 */
addr = nm_ip_address_new (AF_INET, "3.4.5.6", 24, &error);
g_assert_no_error (error);
nm_ip_address_set_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL, NULL);
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
nmtst_assert_setting_verifies (NM_SETTING (s_ip4));
addr = nm_setting_ip_config_get_address (s_ip4, 2);
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label == NULL);
/* Remove addr 1 and re-verify remaining addresses */
nm_setting_ip_config_remove_address (s_ip4, 0);
nmtst_assert_setting_verifies (NM_SETTING (s_ip4));
addr = nm_setting_ip_config_get_address (s_ip4, 0);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "2.3.4.5");
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label != NULL);
g_assert_cmpstr (g_variant_get_string (label, NULL), ==, "eth0:1");
addr = nm_setting_ip_config_get_address (s_ip4, 1);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "3.4.5.6");
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label == NULL);
/* If we serialize as the daemon, the labels should appear in the D-Bus
* serialization under both 'address-labels' and 'address-data'.
*/
conn = nmtst_create_minimal_connection ("label test", NULL, NM_SETTING_WIRED_SETTING_NAME, NULL);
nm_connection_add_setting (conn, NM_SETTING (s_ip4));
_nm_utils_is_manager_process = TRUE;
dict = nm_connection_to_dbus (conn, NM_CONNECTION_SERIALIZE_ALL);
_nm_utils_is_manager_process = FALSE;
g_object_unref (conn);
setting_dict = g_variant_lookup_value (dict, NM_SETTING_IP4_CONFIG_SETTING_NAME, NM_VARIANT_TYPE_SETTING);
g_assert (setting_dict != NULL);
value = g_variant_lookup_value (setting_dict, "address-labels", G_VARIANT_TYPE_STRING_ARRAY);
g_assert (value != NULL);
g_variant_get (value, "^as", &labels);
g_assert_cmpint (g_strv_length (labels), ==, 2);
g_assert_cmpstr (labels[0], ==, "eth0:1");
g_assert_cmpstr (labels[1], ==, "");
g_variant_unref (value);
g_strfreev (labels);
value = g_variant_lookup_value (setting_dict, "address-data", G_VARIANT_TYPE ("aa{sv}"));
addrs = nm_utils_ip_addresses_from_variant (value, AF_INET);
g_variant_unref (value);
g_assert (addrs != NULL);
g_assert_cmpint (addrs->len, ==, 2);
addr = addrs->pdata[0];
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label != NULL);
g_assert_cmpstr (g_variant_get_string (label, NULL), ==, "eth0:1");
addr = addrs->pdata[1];
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label == NULL);
g_ptr_array_unref (addrs);
g_variant_unref (setting_dict);
/* We should be able to deserialize the labels from either 'address-labels'
* or 'address-data'.
*/
dict2 = g_variant_ref (dict);
NMTST_VARIANT_EDITOR (dict,
NMTST_VARIANT_DROP_PROPERTY (NM_SETTING_IP4_CONFIG_SETTING_NAME,
"address-data");
);
conn = _connection_new_from_dbus (dict, &error);
g_assert_no_error (error);
g_variant_unref (dict);
s_ip4 = nm_connection_get_setting_ip4_config (conn);
addr = nm_setting_ip_config_get_address (s_ip4, 0);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "2.3.4.5");
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label != NULL);
g_assert_cmpstr (g_variant_get_string (label, NULL), ==, "eth0:1");
addr = nm_setting_ip_config_get_address (s_ip4, 1);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "3.4.5.6");
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label == NULL);
g_object_unref (conn);
NMTST_VARIANT_EDITOR (dict2,
NMTST_VARIANT_DROP_PROPERTY (NM_SETTING_IP4_CONFIG_SETTING_NAME,
"address-labels");
);
conn = _connection_new_from_dbus (dict2, &error);
g_assert_no_error (error);
g_variant_unref (dict2);
s_ip4 = nm_connection_get_setting_ip4_config (conn);
addr = nm_setting_ip_config_get_address (s_ip4, 0);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "2.3.4.5");
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert_cmpstr (g_variant_get_string (label, NULL), ==, "eth0:1");
addr = nm_setting_ip_config_get_address (s_ip4, 1);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "3.4.5.6");
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label == NULL);
/* Test explicit property assignment */
g_object_get (G_OBJECT (s_ip4),
NM_SETTING_IP_CONFIG_ADDRESSES, &addrs,
NULL);
nm_setting_ip_config_clear_addresses (s_ip4);
g_assert_cmpint (nm_setting_ip_config_get_num_addresses (s_ip4), ==, 0);
g_object_set (G_OBJECT (s_ip4),
NM_SETTING_IP_CONFIG_ADDRESSES, addrs,
NULL);
g_ptr_array_unref (addrs);
nmtst_assert_setting_verifies (NM_SETTING (s_ip4));
g_assert_cmpint (nm_setting_ip_config_get_num_addresses (s_ip4), ==, 2);
addr = nm_setting_ip_config_get_address (s_ip4, 0);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "2.3.4.5");
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label != NULL);
g_assert_cmpstr (g_variant_get_string (label, NULL), ==, "eth0:1");
addr = nm_setting_ip_config_get_address (s_ip4, 1);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "3.4.5.6");
label = nm_ip_address_get_attribute (addr, NM_IP_ADDRESS_ATTRIBUTE_LABEL);
g_assert (label == NULL);
g_object_unref (conn);
}
static void
test_setting_ip4_config_address_data (void)
{
NMSettingIPConfig *s_ip4;
NMIPAddress *addr;
GPtrArray *addrs;
NMConnection *conn;
GVariant *dict, *setting_dict, *value;
GError *error = NULL;
s_ip4 = (NMSettingIPConfig *) nm_setting_ip4_config_new ();
g_object_set (G_OBJECT (s_ip4),
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_MANUAL,
NULL);
/* addr 1 */
addr = nm_ip_address_new (AF_INET, "1.2.3.4", 24, &error);
g_assert_no_error (error);
nm_ip_address_set_attribute (addr, "one", g_variant_new_string ("foo"));
nm_ip_address_set_attribute (addr, "two", g_variant_new_int32 (42));
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
nmtst_assert_setting_verifies (NM_SETTING (s_ip4));
/* addr 2 */
addr = nm_ip_address_new (AF_INET, "2.3.4.5", 24, &error);
g_assert_no_error (error);
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
nmtst_assert_setting_verifies (NM_SETTING (s_ip4));
/* The client-side D-Bus serialization should include the attributes in
* "address-data", and should not have an "addresses" property.
*/
conn = nmtst_create_minimal_connection ("address-data test", NULL, NM_SETTING_WIRED_SETTING_NAME, NULL);
nm_connection_add_setting (conn, NM_SETTING (s_ip4));
dict = nm_connection_to_dbus (conn, NM_CONNECTION_SERIALIZE_ALL);
setting_dict = g_variant_lookup_value (dict, NM_SETTING_IP4_CONFIG_SETTING_NAME, NM_VARIANT_TYPE_SETTING);
g_assert (setting_dict != NULL);
value = g_variant_lookup_value (setting_dict, "addresses", NULL);
g_assert (value == NULL);
value = g_variant_lookup_value (setting_dict, "address-data", G_VARIANT_TYPE ("aa{sv}"));
addrs = nm_utils_ip_addresses_from_variant (value, AF_INET);
g_variant_unref (value);
g_assert (addrs != NULL);
g_assert_cmpint (addrs->len, ==, 2);
addr = addrs->pdata[0];
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "1.2.3.4");
value = nm_ip_address_get_attribute (addr, "one");
g_assert (value != NULL);
g_assert_cmpstr (g_variant_get_string (value, NULL), ==, "foo");
value = nm_ip_address_get_attribute (addr, "two");
g_assert (value != NULL);
g_assert_cmpint (g_variant_get_int32 (value), ==, 42);
g_ptr_array_unref (addrs);
g_variant_unref (setting_dict);
g_variant_unref (dict);
/* The daemon-side serialization should include both 'addresses' and 'address-data' */
_nm_utils_is_manager_process = TRUE;
dict = nm_connection_to_dbus (conn, NM_CONNECTION_SERIALIZE_ALL);
_nm_utils_is_manager_process = FALSE;
setting_dict = g_variant_lookup_value (dict, NM_SETTING_IP4_CONFIG_SETTING_NAME, NM_VARIANT_TYPE_SETTING);
g_assert (setting_dict != NULL);
value = g_variant_lookup_value (setting_dict, "addresses", G_VARIANT_TYPE ("aau"));
g_assert (value != NULL);
g_variant_unref (value);
value = g_variant_lookup_value (setting_dict, "address-data", G_VARIANT_TYPE ("aa{sv}"));
g_assert (value != NULL);
g_variant_unref (value);
g_variant_unref (setting_dict);
g_object_unref (conn);
/* When we reserialize that dictionary as a client, 'address-data' will be preferred. */
conn = _connection_new_from_dbus (dict, &error);
g_assert_no_error (error);
s_ip4 = nm_connection_get_setting_ip4_config (conn);
addr = nm_setting_ip_config_get_address (s_ip4, 0);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "1.2.3.4");
value = nm_ip_address_get_attribute (addr, "one");
g_assert (value != NULL);
g_assert_cmpstr (g_variant_get_string (value, NULL), ==, "foo");
value = nm_ip_address_get_attribute (addr, "two");
g_assert (value != NULL);
g_assert_cmpint (g_variant_get_int32 (value), ==, 42);
/* But on the server side, 'addresses' will have precedence. */
_nm_utils_is_manager_process = TRUE;
conn = _connection_new_from_dbus (dict, &error);
_nm_utils_is_manager_process = FALSE;
g_assert_no_error (error);
g_variant_unref (dict);
s_ip4 = nm_connection_get_setting_ip4_config (conn);
addr = nm_setting_ip_config_get_address (s_ip4, 0);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "1.2.3.4");
value = nm_ip_address_get_attribute (addr, "one");
g_assert (value == NULL);
value = nm_ip_address_get_attribute (addr, "two");
g_assert (value == NULL);
g_object_unref (conn);
}
static void
test_setting_ip_route_attributes (void)
{
GVariant *variant;
gboolean res, known;
#define TEST_ATTR(name, type, value, family, exp_res, exp_known) \
variant = g_variant_new_ ## type (value); \
res = nm_ip_route_attribute_validate (name, variant, family, &known, NULL); \
g_assert (res == exp_res); \
g_assert (known == exp_known); \
g_variant_unref (variant);
TEST_ATTR ("foo", uint32, 12, AF_INET, FALSE, FALSE);
TEST_ATTR ("tos", byte, 127, AF_INET, TRUE, TRUE);
TEST_ATTR ("tos", string, "0x28", AF_INET, FALSE, TRUE);
TEST_ATTR ("cwnd", uint32, 10, AF_INET, TRUE, TRUE);
TEST_ATTR ("cwnd", string, "11", AF_INET, FALSE, TRUE);
TEST_ATTR ("lock-mtu", boolean, TRUE, AF_INET, TRUE, TRUE);
TEST_ATTR ("lock-mtu", uint32, 1, AF_INET, FALSE, TRUE);
TEST_ATTR ("from", string, "fd01::1", AF_INET6, TRUE, TRUE);
TEST_ATTR ("from", string, "fd01::1/64", AF_INET6, TRUE, TRUE);
TEST_ATTR ("from", string, "fd01::1/128", AF_INET6, TRUE, TRUE);
TEST_ATTR ("from", string, "fd01::1/129", AF_INET6, FALSE, TRUE);
TEST_ATTR ("from", string, "fd01::1/a", AF_INET6, FALSE, TRUE);
TEST_ATTR ("from", string, "abc/64", AF_INET6, FALSE, TRUE);
TEST_ATTR ("from", string, "1.2.3.4", AF_INET, FALSE, TRUE);
TEST_ATTR ("from", string, "1.2.3.4", AF_INET6, FALSE, TRUE);
TEST_ATTR ("src", string, "1.2.3.4", AF_INET, TRUE, TRUE);
TEST_ATTR ("src", string, "1.2.3.4", AF_INET6, FALSE, TRUE);
TEST_ATTR ("src", string, "1.2.3.0/24", AF_INET, FALSE, TRUE);
TEST_ATTR ("src", string, "fd01::12", AF_INET6, TRUE, TRUE);
TEST_ATTR ("type", string, "local", AF_INET, TRUE, TRUE);
TEST_ATTR ("type", string, "local", AF_INET6, TRUE, TRUE);
TEST_ATTR ("type", string, "unicast", AF_INET, TRUE, TRUE);
TEST_ATTR ("type", string, "unicast", AF_INET6, TRUE, TRUE);
#undef TEST_ATTR
}
static void
test_setting_gsm_apn_spaces (void)
{
gs_unref_object NMSettingGsm *s_gsm = NULL;
const char *tmp;
s_gsm = (NMSettingGsm *) nm_setting_gsm_new ();
g_assert (s_gsm);
/* Trailing space */
g_object_set (s_gsm, NM_SETTING_GSM_APN, "foobar ", NULL);
tmp = nm_setting_gsm_get_apn (s_gsm);
g_assert_cmpstr (tmp, ==, "foobar");
/* Leading space */
g_object_set (s_gsm, NM_SETTING_GSM_APN, " foobar", NULL);
tmp = nm_setting_gsm_get_apn (s_gsm);
g_assert_cmpstr (tmp, ==, "foobar");
}
static void
test_setting_gsm_apn_bad_chars (void)
{
gs_unref_object NMSettingGsm *s_gsm = NULL;
s_gsm = (NMSettingGsm *) nm_setting_gsm_new ();
g_assert (s_gsm);
/* Make sure a valid APN works */
g_object_set (s_gsm, NM_SETTING_GSM_APN, "foobar123.-baz", NULL);
g_assert (nm_setting_verify (NM_SETTING (s_gsm), NULL, NULL));
/* Random invalid chars */
g_object_set (s_gsm, NM_SETTING_GSM_APN, "@#%$@#%@#%", NULL);
g_assert (!nm_setting_verify (NM_SETTING (s_gsm), NULL, NULL));
/* Spaces */
g_object_set (s_gsm, NM_SETTING_GSM_APN, "foobar baz", NULL);
g_assert (!nm_setting_verify (NM_SETTING (s_gsm), NULL, NULL));
/* 0 characters long */
g_object_set (s_gsm, NM_SETTING_GSM_APN, "", NULL);
g_assert (nm_setting_verify (NM_SETTING (s_gsm), NULL, NULL));
/* 65-character long */
g_object_set (s_gsm, NM_SETTING_GSM_APN, "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijkl1", NULL);
g_assert (!nm_setting_verify (NM_SETTING (s_gsm), NULL, NULL));
}
static void
test_setting_gsm_apn_underscore (void)
{
gs_unref_object NMSettingGsm *s_gsm = NULL;
s_gsm = (NMSettingGsm *) nm_setting_gsm_new ();
g_assert (s_gsm);
/* 65-character long */
g_object_set (s_gsm, NM_SETTING_GSM_APN, "foobar_baz", NULL);
nmtst_assert_setting_verifies (NM_SETTING (s_gsm));
}
static void
test_setting_gsm_without_number (void)
{
gs_unref_object NMSettingGsm *s_gsm = NULL;
s_gsm = (NMSettingGsm *) nm_setting_gsm_new ();
g_assert (s_gsm);
g_object_set (s_gsm, NM_SETTING_GSM_NUMBER, NULL, NULL);
nmtst_assert_setting_verifies (NM_SETTING (s_gsm));
g_object_set (s_gsm, NM_SETTING_GSM_NUMBER, "", NULL);
nmtst_assert_setting_verify_fails (NM_SETTING (s_gsm), NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
}
static void
test_setting_gsm_sim_operator_id (void)
{
gs_unref_object NMSettingGsm *s_gsm = NULL;
s_gsm = (NMSettingGsm *) nm_setting_gsm_new ();
g_assert (s_gsm);
/* Valid */
g_object_set (s_gsm, NM_SETTING_GSM_SIM_OPERATOR_ID, "12345", NULL);
nmtst_assert_setting_verifies (NM_SETTING (s_gsm));
g_object_set (s_gsm, NM_SETTING_GSM_SIM_OPERATOR_ID, "123456", NULL);
nmtst_assert_setting_verifies (NM_SETTING (s_gsm));
/* Invalid */
g_object_set (s_gsm, NM_SETTING_GSM_SIM_OPERATOR_ID, "", NULL);
nmtst_assert_setting_verify_fails (NM_SETTING (s_gsm), NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_object_set (s_gsm, NM_SETTING_GSM_SIM_OPERATOR_ID, " ", NULL);
nmtst_assert_setting_verify_fails (NM_SETTING (s_gsm), NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_object_set (s_gsm, NM_SETTING_GSM_SIM_OPERATOR_ID, "abcdef", NULL);
nmtst_assert_setting_verify_fails (NM_SETTING (s_gsm), NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
}
static NMSettingWirelessSecurity *
make_test_wsec_setting (const char *detail)
{
NMSettingWirelessSecurity *s_wsec;
s_wsec = (NMSettingWirelessSecurity *) nm_setting_wireless_security_new ();
g_assert (s_wsec);
g_object_set (s_wsec,
NM_SETTING_WIRELESS_SECURITY_KEY_MGMT, "wpa-psk",
NM_SETTING_WIRELESS_SECURITY_LEAP_USERNAME, "foobarbaz",
NM_SETTING_WIRELESS_SECURITY_PSK, "random psk",
NM_SETTING_WIRELESS_SECURITY_PSK_FLAGS, NM_SETTING_SECRET_FLAG_NOT_SAVED,
NM_SETTING_WIRELESS_SECURITY_WEP_KEY0, "aaaaaaaaaa",
NULL);
return s_wsec;
}
static gboolean
_variant_contains (GVariant *vardict, const char *key)
{
gs_unref_variant GVariant *value = NULL;
value = g_variant_lookup_value (vardict, key, NULL);
return !!value;
}
static void
test_setting_to_dbus_all (void)
{
NMSettingWirelessSecurity *s_wsec;
GVariant *dict;
s_wsec = make_test_wsec_setting ("setting-to-dbus-all");
dict = _nm_setting_to_dbus (NM_SETTING (s_wsec), NULL, NM_CONNECTION_SERIALIZE_ALL, NULL);
/* Make sure all keys are there */
g_assert (_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_KEY_MGMT));
g_assert (_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_LEAP_USERNAME));
g_assert (_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_PSK));
g_assert (_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_WEP_KEY0));
g_variant_unref (dict);
g_object_unref (s_wsec);
}
static void
test_setting_to_dbus_no_secrets (void)
{
NMSettingWirelessSecurity *s_wsec;
GVariant *dict;
s_wsec = make_test_wsec_setting ("setting-to-dbus-no-secrets");
dict = _nm_setting_to_dbus (NM_SETTING (s_wsec), NULL, NM_CONNECTION_SERIALIZE_NO_SECRETS, NULL);
/* Make sure non-secret keys are there */
g_assert (_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_KEY_MGMT));
g_assert (_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_LEAP_USERNAME));
/* Make sure secrets are not there */
g_assert (!_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_PSK));
g_assert (!_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_WEP_KEY0));
g_variant_unref (dict);
g_object_unref (s_wsec);
}
static void
test_setting_to_dbus_only_secrets (void)
{
NMSettingWirelessSecurity *s_wsec;
GVariant *dict;
s_wsec = make_test_wsec_setting ("setting-to-dbus-only-secrets");
dict = _nm_setting_to_dbus (NM_SETTING (s_wsec), NULL, NM_CONNECTION_SERIALIZE_ONLY_SECRETS, NULL);
/* Make sure non-secret keys are not there */
g_assert (!_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_KEY_MGMT));
g_assert (!_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_LEAP_USERNAME));
/* Make sure secrets are there */
g_assert (_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_PSK));
g_assert (_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_WEP_KEY0));
g_variant_unref (dict);
g_object_unref (s_wsec);
}
static void
test_setting_to_dbus_transform (void)
{
NMSetting *s_wired;
GVariant *dict, *val;
const char *test_mac_address = "11:22:33:44:55:66";
const guint8 *dbus_mac_address;
guint8 cmp_mac_address[ETH_ALEN];
gsize len;
s_wired = nm_setting_wired_new ();
g_object_set (s_wired,
NM_SETTING_WIRED_MAC_ADDRESS, test_mac_address,
NULL);
g_assert_cmpstr (nm_setting_wired_get_mac_address (NM_SETTING_WIRED (s_wired)), ==, test_mac_address);
dict = _nm_setting_to_dbus (s_wired, NULL, NM_CONNECTION_SERIALIZE_ALL, NULL);
g_assert (dict != NULL);
val = g_variant_lookup_value (dict, NM_SETTING_WIRED_MAC_ADDRESS, G_VARIANT_TYPE_BYTESTRING);
g_assert (val != NULL);
dbus_mac_address = g_variant_get_fixed_array (val, &len, 1);
g_assert_cmpint (len, ==, ETH_ALEN);
nm_utils_hwaddr_aton (test_mac_address, cmp_mac_address, ETH_ALEN);
g_assert (memcmp (dbus_mac_address, cmp_mac_address, ETH_ALEN) == 0);
g_variant_unref (val);
g_variant_unref (dict);
g_object_unref (s_wired);
}
static void
test_setting_to_dbus_enum (void)
{
NMSetting *s_ip6, *s_wsec, *s_serial;
GVariant *dict, *val;
/* enum */
s_ip6 = nm_setting_ip6_config_new ();
g_object_set (s_ip6,
NM_SETTING_IP6_CONFIG_IP6_PRIVACY, NM_SETTING_IP6_CONFIG_PRIVACY_PREFER_TEMP_ADDR,
NULL);
dict = _nm_setting_to_dbus (s_ip6, NULL, NM_CONNECTION_SERIALIZE_ALL, NULL);
g_assert (dict != NULL);
val = g_variant_lookup_value (dict, NM_SETTING_IP6_CONFIG_IP6_PRIVACY, G_VARIANT_TYPE_INT32);
g_assert (val != NULL);
g_assert_cmpint (g_variant_get_int32 (val), ==, NM_SETTING_IP6_CONFIG_PRIVACY_PREFER_TEMP_ADDR);
g_variant_unref (val);
g_variant_unref (dict);
g_object_unref (s_ip6);
/* flags (and a transformed enum) */
s_wsec = nm_setting_wireless_security_new ();
g_object_set (s_wsec,
NM_SETTING_WIRELESS_SECURITY_WEP_KEY_TYPE, NM_WEP_KEY_TYPE_KEY,
NM_SETTING_WIRELESS_SECURITY_WEP_KEY_FLAGS, (NM_SETTING_SECRET_FLAG_AGENT_OWNED |
NM_SETTING_SECRET_FLAG_NOT_SAVED),
NULL);
dict = _nm_setting_to_dbus (s_wsec, NULL, NM_CONNECTION_SERIALIZE_ALL, NULL);
g_assert (dict != NULL);
val = g_variant_lookup_value (dict, NM_SETTING_WIRELESS_SECURITY_WEP_KEY_TYPE, G_VARIANT_TYPE_UINT32);
g_assert (val != NULL);
g_assert_cmpint (g_variant_get_uint32 (val), ==, NM_WEP_KEY_TYPE_KEY);
g_variant_unref (val);
val = g_variant_lookup_value (dict, NM_SETTING_WIRELESS_SECURITY_WEP_KEY_FLAGS, G_VARIANT_TYPE_UINT32);
g_assert (val != NULL);
g_assert_cmpint (g_variant_get_uint32 (val), ==, (NM_SETTING_SECRET_FLAG_AGENT_OWNED |
NM_SETTING_SECRET_FLAG_NOT_SAVED));
g_variant_unref (val);
g_variant_unref (dict);
g_object_unref (s_wsec);
/* another transformed enum */
s_serial = nm_setting_serial_new ();
g_object_set (s_serial,
NM_SETTING_SERIAL_PARITY, NM_SETTING_SERIAL_PARITY_ODD,
NULL);
dict = _nm_setting_to_dbus (s_serial, NULL, NM_CONNECTION_SERIALIZE_ALL, NULL);
g_assert (dict != NULL);
val = g_variant_lookup_value (dict, NM_SETTING_SERIAL_PARITY, G_VARIANT_TYPE_BYTE);
g_assert (val != NULL);
g_assert_cmpint (g_variant_get_byte (val), ==, 'o');
g_variant_unref (val);
g_variant_unref (dict);
g_object_unref (s_serial);
}
static void
test_connection_to_dbus_setting_name (void)
{
NMConnection *connection;
NMSettingWirelessSecurity *s_wsec;
GVariant *dict;
connection = nm_simple_connection_new ();
s_wsec = make_test_wsec_setting ("connection-to-dbus-setting-name");
nm_connection_add_setting (connection, NM_SETTING (s_wsec));
libnm,core: add _nm_connection_aggregate() to replace nm_connection_for_each_setting_value() We should no longer use nm_connection_for_each_setting_value() and nm_setting_for_each_value(). It's fundamentally broken as it does not work with properties that are not backed by a GObject property and it cannot be fixed because it is public API. Add an internal function _nm_connection_aggregate() to replace it. Compare the implementation of the aggregation functionality inside libnm with the previous two checks for secret-flags that it replaces: - previous approach broke abstraction and require detailed knowledge of secret flags. Meaning, they must special case NMSettingVpn and GObject-property based secrets. If we implement a new way for implementing secrets (like we will need for WireGuard), then this the new way should only affect libnm-core, not require changes elsewhere. - it's very inefficient to itereate over all settings. It involves cloning and sorting the list of settings, and retrieve and clone all GObject properties. Only to look at secret properties alone. _nm_connection_aggregate() is supposed to be more flexible then just the two new aggregate types that perform a "find-any" search. The @arg argument and boolean return value can suffice to implement different aggregation types in the future. Also fixes the check of NMAgentManager for secret flags for VPNs (NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS). A secret for VPNs is a property that either has a secret or a secret-flag. The previous implementation would only look at present secrets and check their flags. It wouldn't check secret-flags that are NM_SETTING_SECRET_FLAG_NONE, but have no secret.
2019-01-04 11:28:27 +01:00
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SECRETS, NULL));
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS, NULL));
g_object_set (s_wsec,
NM_SETTING_WIRELESS_SECURITY_WEP_KEY_FLAGS, NM_SETTING_SECRET_FLAG_NOT_SAVED,
NM_SETTING_WIRELESS_SECURITY_LEAP_PASSWORD_FLAGS, NM_SETTING_SECRET_FLAG_NOT_SAVED,
NULL);
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SECRETS, NULL));
g_assert (!_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS, NULL));
g_object_set (s_wsec,
NM_SETTING_WIRELESS_SECURITY_WEP_KEY_FLAGS, NM_SETTING_SECRET_FLAG_NONE,
NM_SETTING_WIRELESS_SECURITY_LEAP_PASSWORD_FLAGS, NM_SETTING_SECRET_FLAG_NONE,
NULL);
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SECRETS, NULL));
g_assert (_nm_connection_aggregate (connection, NM_CONNECTION_AGGREGATE_ANY_SYSTEM_SECRET_FLAGS, NULL));
dict = nm_connection_to_dbus (connection, NM_CONNECTION_SERIALIZE_ALL);
/* Make sure the keys of the first level dict are setting names, not
* the GType name of the setting objects.
*/
g_assert (_variant_contains (dict, NM_SETTING_WIRELESS_SECURITY_SETTING_NAME));
g_variant_unref (dict);
g_object_unref (connection);
}
static void
test_connection_to_dbus_deprecated_props (void)
{
NMConnection *connection;
NMSetting *s_wireless;
GBytes *ssid;
NMSettingWirelessSecurity *s_wsec;
GVariant *dict, *wireless_dict, *sec_val;
connection = nmtst_create_minimal_connection ("test-connection-to-dbus-deprecated-props",
NULL,
NM_SETTING_WIRELESS_SETTING_NAME,
NULL);
s_wireless = nm_setting_wireless_new ();
ssid = g_bytes_new ("1234567", 7);
g_object_set (s_wireless,
NM_SETTING_WIRELESS_SSID, ssid,
NULL);
g_bytes_unref (ssid);
nm_connection_add_setting (connection, s_wireless);
/* Serialization should not have an 802-11-wireless.security property */
dict = nm_connection_to_dbus (connection, NM_CONNECTION_SERIALIZE_ALL);
g_assert (dict != NULL);
wireless_dict = g_variant_lookup_value (dict, NM_SETTING_WIRELESS_SETTING_NAME, NM_VARIANT_TYPE_SETTING);
g_assert (wireless_dict != NULL);
sec_val = g_variant_lookup_value (wireless_dict, "security", NULL);
g_assert (sec_val == NULL);
g_variant_unref (wireless_dict);
g_variant_unref (dict);
/* Now add an NMSettingWirelessSecurity and try again */
s_wsec = make_test_wsec_setting ("test-connection-to-dbus-deprecated-props");
nm_connection_add_setting (connection, NM_SETTING (s_wsec));
dict = nm_connection_to_dbus (connection, NM_CONNECTION_SERIALIZE_ALL);
g_assert (dict != NULL);
wireless_dict = g_variant_lookup_value (dict, NM_SETTING_WIRELESS_SETTING_NAME, NM_VARIANT_TYPE_SETTING);
g_assert (wireless_dict != NULL);
sec_val = g_variant_lookup_value (wireless_dict, "security", NULL);
g_assert (g_variant_is_of_type (sec_val, G_VARIANT_TYPE_STRING));
g_assert_cmpstr (g_variant_get_string (sec_val, NULL), ==, NM_SETTING_WIRELESS_SECURITY_SETTING_NAME);
g_variant_unref (sec_val);
g_variant_unref (wireless_dict);
g_variant_unref (dict);
g_object_unref (connection);
}
static void
test_setting_new_from_dbus (void)
{
NMSettingWirelessSecurity *s_wsec;
GVariant *dict;
s_wsec = make_test_wsec_setting ("setting-new-from-dbus");
dict = _nm_setting_to_dbus (NM_SETTING (s_wsec), NULL, NM_CONNECTION_SERIALIZE_ALL, NULL);
g_object_unref (s_wsec);
s_wsec = (NMSettingWirelessSecurity *) _nm_setting_new_from_dbus (NM_TYPE_SETTING_WIRELESS_SECURITY, dict, NULL, NM_SETTING_PARSE_FLAGS_NONE, NULL);
g_variant_unref (dict);
g_assert (s_wsec);
g_assert_cmpstr (nm_setting_wireless_security_get_key_mgmt (s_wsec), ==, "wpa-psk");
g_assert_cmpstr (nm_setting_wireless_security_get_leap_username (s_wsec), ==, "foobarbaz");
g_assert_cmpstr (nm_setting_wireless_security_get_psk (s_wsec), ==, "random psk");
g_object_unref (s_wsec);
}
static void
test_setting_new_from_dbus_transform (void)
{
NMSetting *s_wired;
GVariant *dict;
GVariantBuilder builder;
const char *test_mac_address = "11:22:33:44:55:66";
guint8 dbus_mac_address[ETH_ALEN];
GError *error = NULL;
nm_utils_hwaddr_aton (test_mac_address, dbus_mac_address, ETH_ALEN);
g_variant_builder_init (&builder, NM_VARIANT_TYPE_SETTING);
g_variant_builder_add (&builder, "{sv}",
NM_SETTING_WIRED_MAC_ADDRESS,
g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
dbus_mac_address, ETH_ALEN, 1));
dict = g_variant_builder_end (&builder);
s_wired = _nm_setting_new_from_dbus (NM_TYPE_SETTING_WIRED, dict, NULL, NM_SETTING_PARSE_FLAGS_NONE, &error);
g_assert_no_error (error);
g_assert_cmpstr (nm_setting_wired_get_mac_address (NM_SETTING_WIRED (s_wired)), ==, test_mac_address);
g_variant_unref (dict);
g_object_unref (s_wired);
}
static void
test_setting_new_from_dbus_enum (void)
{
NMSettingIP6Config *s_ip6;
NMSettingWirelessSecurity *s_wsec;
NMSettingSerial *s_serial;
GVariant *dict;
GVariantBuilder builder;
GError *error = NULL;
/* enum */
g_variant_builder_init (&builder, NM_VARIANT_TYPE_SETTING);
g_variant_builder_add (&builder, "{sv}",
NM_SETTING_IP6_CONFIG_IP6_PRIVACY,
g_variant_new_int32 (NM_SETTING_IP6_CONFIG_PRIVACY_PREFER_TEMP_ADDR));
dict = g_variant_builder_end (&builder);
s_ip6 = (NMSettingIP6Config *) _nm_setting_new_from_dbus (NM_TYPE_SETTING_IP6_CONFIG, dict, NULL, NM_SETTING_PARSE_FLAGS_NONE, &error);
g_assert_no_error (error);
g_assert_cmpint (nm_setting_ip6_config_get_ip6_privacy (s_ip6), ==, NM_SETTING_IP6_CONFIG_PRIVACY_PREFER_TEMP_ADDR);
g_variant_unref (dict);
g_object_unref (s_ip6);
/* flags (and a transformed enum) */
g_variant_builder_init (&builder, NM_VARIANT_TYPE_SETTING);
g_variant_builder_add (&builder, "{sv}",
NM_SETTING_WIRELESS_SECURITY_WEP_KEY_TYPE,
g_variant_new_uint32 (NM_WEP_KEY_TYPE_KEY));
g_variant_builder_add (&builder, "{sv}",
NM_SETTING_WIRELESS_SECURITY_WEP_KEY_FLAGS,
g_variant_new_uint32 (NM_SETTING_SECRET_FLAG_AGENT_OWNED |
NM_SETTING_SECRET_FLAG_NOT_SAVED));
dict = g_variant_builder_end (&builder);
s_wsec = (NMSettingWirelessSecurity *) _nm_setting_new_from_dbus (NM_TYPE_SETTING_WIRELESS_SECURITY, dict, NULL, NM_SETTING_PARSE_FLAGS_NONE, &error);
g_assert_no_error (error);
g_assert_cmpint (nm_setting_wireless_security_get_wep_key_type (s_wsec), ==, NM_WEP_KEY_TYPE_KEY);
g_assert_cmpint (nm_setting_wireless_security_get_wep_key_flags (s_wsec), ==, (NM_SETTING_SECRET_FLAG_AGENT_OWNED |
NM_SETTING_SECRET_FLAG_NOT_SAVED));
g_variant_unref (dict);
g_object_unref (s_wsec);
/* another transformed enum */
g_variant_builder_init (&builder, NM_VARIANT_TYPE_SETTING);
g_variant_builder_add (&builder, "{sv}",
NM_SETTING_SERIAL_PARITY,
g_variant_new_byte ('E'));
dict = g_variant_builder_end (&builder);
s_serial = (NMSettingSerial *) _nm_setting_new_from_dbus (NM_TYPE_SETTING_SERIAL, dict, NULL, NM_SETTING_PARSE_FLAGS_NONE, &error);
g_assert_no_error (error);
g_assert_cmpint (nm_setting_serial_get_parity (s_serial), ==, NM_SETTING_SERIAL_PARITY_EVEN);
g_variant_unref (dict);
g_object_unref (s_serial);
}
static void
test_setting_new_from_dbus_bad (void)
{
NMSetting *setting;
NMConnection *conn;
GBytes *ssid;
GPtrArray *addrs;
GVariant *orig_dict, *dict;
GError *error = NULL;
/* We want to test:
* - ordinary scalar properties
* - string properties
* - GBytes-valued properties (which are handled specially by set_property_from_dbus())
* - enum/flags-valued properties
* - overridden properties
* - transformed properties
*
* No single setting class has examples of all of these, so we need two settings.
*/
conn = nm_simple_connection_new ();
setting = nm_setting_connection_new ();
g_object_set (setting,
NM_SETTING_CONNECTION_ID, "test",
NM_SETTING_CONNECTION_UUID, "83c5a841-1759-4cdb-bfce-8d4087956497",
NULL);
nm_connection_add_setting (conn, setting);
setting = nm_setting_wireless_new ();
ssid = g_bytes_new ("my-ssid", 7);
g_object_set (setting,
/* scalar */
NM_SETTING_WIRELESS_RATE, 100,
/* string */
NM_SETTING_WIRELESS_MODE, NM_SETTING_WIRELESS_MODE_INFRA,
/* GBytes */
NM_SETTING_WIRELESS_SSID, ssid,
/* transformed */
NM_SETTING_WIRELESS_BSSID, "00:11:22:33:44:55",
NULL);
g_bytes_unref (ssid);
nm_connection_add_setting (conn, setting);
setting = nm_setting_ip6_config_new ();
addrs = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip_address_unref);
g_ptr_array_add (addrs, nm_ip_address_new (AF_INET6, "1234::5678", 64, NULL));
g_object_set (setting,
/* enum */
NM_SETTING_IP6_CONFIG_IP6_PRIVACY, NM_SETTING_IP6_CONFIG_PRIVACY_PREFER_PUBLIC_ADDR,
/* overridden */
NM_SETTING_IP_CONFIG_ADDRESSES, addrs,
/* (needed in order to verify()) */
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP6_CONFIG_METHOD_AUTO,
NULL);
g_ptr_array_unref (addrs);
nm_connection_add_setting (conn, setting);
orig_dict = nm_connection_to_dbus (conn, NM_CONNECTION_SERIALIZE_ALL);
g_object_unref (conn);
/* sanity-check */
conn = _connection_new_from_dbus (orig_dict, &error);
g_assert_no_error (error);
g_assert (conn);
g_object_unref (conn);
/* Compatible mismatches */
dict = g_variant_ref (orig_dict);
NMTST_VARIANT_EDITOR (dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_WIRELESS_SETTING_NAME,
NM_SETTING_WIRELESS_RATE,
"i", 10);
);
conn = _connection_new_from_dbus (dict, &error);
g_assert (conn);
g_assert_no_error (error);
setting = nm_connection_get_setting (conn, NM_TYPE_SETTING_WIRELESS);
g_assert (setting);
g_assert_cmpint (nm_setting_wireless_get_rate (NM_SETTING_WIRELESS (setting)), ==, 10);
g_object_unref (conn);
g_variant_unref (dict);
dict = g_variant_ref (orig_dict);
NMTST_VARIANT_EDITOR (dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_IP6_PRIVACY,
"i", NM_SETTING_IP6_CONFIG_PRIVACY_PREFER_TEMP_ADDR);
);
conn = _connection_new_from_dbus (dict, &error);
g_assert (conn);
g_assert_no_error (error);
setting = nm_connection_get_setting (conn, NM_TYPE_SETTING_IP6_CONFIG);
g_assert (setting);
g_assert_cmpint (nm_setting_ip6_config_get_ip6_privacy (NM_SETTING_IP6_CONFIG (setting)), ==, NM_SETTING_IP6_CONFIG_PRIVACY_PREFER_TEMP_ADDR);
g_object_unref (conn);
g_variant_unref (dict);
/* Incompatible mismatches */
dict = g_variant_ref (orig_dict);
NMTST_VARIANT_EDITOR (dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_WIRELESS_SETTING_NAME,
NM_SETTING_WIRELESS_RATE,
"s", "ten");
);
conn = _connection_new_from_dbus (dict, &error);
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "802-11-wireless.rate:"));
g_clear_error (&error);
g_variant_unref (dict);
dict = g_variant_ref (orig_dict);
NMTST_VARIANT_EDITOR (dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_WIRELESS_SETTING_NAME,
NM_SETTING_WIRELESS_MODE,
"b", FALSE);
);
conn = _connection_new_from_dbus (dict, &error);
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "802-11-wireless.mode:"));
g_clear_error (&error);
g_variant_unref (dict);
dict = g_variant_ref (orig_dict);
NMTST_VARIANT_EDITOR (dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_WIRELESS_SETTING_NAME,
NM_SETTING_WIRELESS_SSID,
"s", "fred");
);
conn = _connection_new_from_dbus (dict, &error);
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "802-11-wireless.ssid:"));
g_clear_error (&error);
g_variant_unref (dict);
dict = g_variant_ref (orig_dict);
NMTST_VARIANT_EDITOR (dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_WIRELESS_SETTING_NAME,
NM_SETTING_WIRELESS_BSSID,
"i", 42);
);
conn = _connection_new_from_dbus (dict, &error);
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "802-11-wireless.bssid:"));
g_clear_error (&error);
g_variant_unref (dict);
dict = g_variant_ref (orig_dict);
NMTST_VARIANT_EDITOR (dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_IP6_PRIVACY,
"s", "private");
);
conn = _connection_new_from_dbus (dict, &error);
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "ipv6.ip6-privacy:"));
g_clear_error (&error);
g_variant_unref (dict);
dict = g_variant_ref (orig_dict);
NMTST_VARIANT_EDITOR (dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_IP_CONFIG_ADDRESSES,
"s", "1234::5678");
);
conn = _connection_new_from_dbus (dict, &error);
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "ipv6.addresses:"));
g_clear_error (&error);
g_variant_unref (dict);
g_variant_unref (orig_dict);
}
static NMConnection *
new_test_connection (void)
{
NMConnection *connection;
NMSetting *setting;
char *uuid;
guint64 timestamp = time (NULL);
connection = nm_simple_connection_new ();
setting = nm_setting_connection_new ();
uuid = nm_utils_uuid_generate ();
g_object_set (G_OBJECT (setting),
NM_SETTING_CONNECTION_ID, "foobar",
NM_SETTING_CONNECTION_UUID, uuid,
NM_SETTING_CONNECTION_TYPE, NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_CONNECTION_TIMESTAMP, timestamp,
NULL);
g_free (uuid);
nm_connection_add_setting (connection, setting);
setting = nm_setting_wired_new ();
g_object_set (G_OBJECT (setting),
NM_SETTING_WIRED_MTU, 1592,
NULL);
nm_connection_add_setting (connection, setting);
setting = nm_setting_ip4_config_new ();
g_object_set (G_OBJECT (setting),
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_AUTO,
NM_SETTING_IP_CONFIG_DHCP_HOSTNAME, "eyeofthetiger",
NULL);
nm_connection_add_setting (connection, setting);
return connection;
}
static GVariant *
new_connection_dict (char **out_uuid,
const char **out_expected_id,
const char **out_expected_ip6_method)
{
GVariantBuilder conn_builder, setting_builder;
g_variant_builder_init (&conn_builder, NM_VARIANT_TYPE_CONNECTION);
*out_uuid = nm_utils_uuid_generate ();
*out_expected_id = "My happy connection";
*out_expected_ip6_method = NM_SETTING_IP6_CONFIG_METHOD_LINK_LOCAL;
/* Connection setting */
g_variant_builder_init (&setting_builder, NM_VARIANT_TYPE_SETTING);
g_variant_builder_add (&setting_builder, "{sv}",
NM_SETTING_NAME,
g_variant_new_string (NM_SETTING_CONNECTION_SETTING_NAME));
g_variant_builder_add (&setting_builder, "{sv}",
NM_SETTING_CONNECTION_ID,
g_variant_new_string (*out_expected_id));
g_variant_builder_add (&setting_builder, "{sv}",
NM_SETTING_CONNECTION_UUID,
g_variant_new_string (*out_uuid));
g_variant_builder_add (&setting_builder, "{sv}",
NM_SETTING_CONNECTION_TYPE,
g_variant_new_string (NM_SETTING_WIRED_SETTING_NAME));
g_variant_builder_add (&conn_builder, "{sa{sv}}",
NM_SETTING_CONNECTION_SETTING_NAME,
&setting_builder);
/* Wired setting */
g_variant_builder_init (&setting_builder, NM_VARIANT_TYPE_SETTING);
g_variant_builder_add (&conn_builder, "{sa{sv}}",
NM_SETTING_WIRED_SETTING_NAME,
&setting_builder);
/* IP6 */
g_variant_builder_init (&setting_builder, NM_VARIANT_TYPE_SETTING);
g_variant_builder_add (&setting_builder, "{sv}",
NM_SETTING_IP_CONFIG_METHOD,
g_variant_new_string (*out_expected_ip6_method));
g_variant_builder_add (&conn_builder, "{sa{sv}}",
NM_SETTING_IP6_CONFIG_SETTING_NAME,
&setting_builder);
return g_variant_builder_end (&conn_builder);
}
static void
test_connection_replace_settings (void)
{
NMConnection *connection;
GVariant *new_settings;
GError *error = NULL;
gboolean success;
NMSettingConnection *s_con;
NMSettingIPConfig *s_ip6;
char *uuid = NULL;
const char *expected_id = NULL, *expected_method = NULL;
connection = new_test_connection ();
new_settings = new_connection_dict (&uuid, &expected_id, &expected_method);
g_assert (new_settings);
/* Replace settings and test */
success = nm_connection_replace_settings (connection, new_settings, &error);
g_assert_no_error (error);
g_assert (success);
s_con = nm_connection_get_setting_connection (connection);
g_assert (s_con);
g_assert_cmpstr (nm_setting_connection_get_id (s_con), ==, expected_id);
g_assert_cmpstr (nm_setting_connection_get_uuid (s_con), ==, uuid);
g_assert (nm_connection_get_setting_wired (connection));
g_assert (!nm_connection_get_setting_ip4_config (connection));
s_ip6 = nm_connection_get_setting_ip6_config (connection);
g_assert (s_ip6);
g_assert_cmpstr (nm_setting_ip_config_get_method (s_ip6), ==, expected_method);
g_free (uuid);
g_variant_unref (new_settings);
g_object_unref (connection);
}
static void
test_connection_replace_settings_from_connection (void)
{
NMConnection *connection, *replacement;
NMSettingConnection *s_con;
NMSetting *setting;
GBytes *ssid;
char *uuid = NULL;
const char *expected_id = "Awesome connection";
connection = new_test_connection ();
g_assert (connection);
replacement = nm_simple_connection_new ();
g_assert (replacement);
/* New connection setting */
setting = nm_setting_connection_new ();
g_assert (setting);
uuid = nm_utils_uuid_generate ();
g_object_set (setting,
NM_SETTING_CONNECTION_ID, expected_id,
NM_SETTING_CONNECTION_UUID, uuid,
NM_SETTING_CONNECTION_TYPE, NM_SETTING_WIRELESS_SETTING_NAME,
NULL);
nm_connection_add_setting (replacement, setting);
/* New wifi setting */
setting = nm_setting_wireless_new ();
g_assert (setting);
ssid = g_bytes_new ("1234567", 7);
g_object_set (setting,
NM_SETTING_WIRELESS_SSID, ssid,
NM_SETTING_WIRELESS_MODE, "infrastructure",
NULL);
g_bytes_unref (ssid);
nm_connection_add_setting (replacement, setting);
/* Replace settings and test */
libnm-core: fix up connection deserialize/copy/replace semantics libnm-util's connection deserializing/copying/replacing functions have odd semantics where sometimes they both modify a connection AND return an error. libnm-core tried to improve things by guaranteeing that the connection would not be modified if the new settings were invalid, but this ended up breaking a bunch of places that needed to be able to work with invalid connections. So re-fix the functions by reverting back to the old semantics, but having return values that clearly distinguish whether the connection was modified or not. For comparison: - nm_connection_new_from_hash() / nm_simple_connection_new_from_dbus(): - libnm-util: returns a valid connection or NULL. - OLD libnm-core: returned a valid connection or NULL. - NEW libnm-core: returns a valid connection or NULL. - nm_connection_duplicate() / nm_simple_connection_new_clone(): - libnm-util: always succeeds, whether or not the connection is valid. - OLD libnm-core: returned a valid connection or NULL - NEW libnm-core: always succeeds, whether or not the connection is valid. - nm_connection_replace_settings_from_connection(): - libnm-util: always replaces the settings, but returns FALSE if the connection is now invalid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: always replaces the settings, and has no return value. (The modified connection is valid if and only if the replaced-from connection was valid; just like with the libnm-util version.) - nm_connection_replace_settings(): - libnm-util: returns TRUE if the new settings are valid, or FALSE if either (a) the new settings could not be deserialized and the connection is unchanged, or (b) the new settings were deserialized, and the connection was updated, but is now not valid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: returns TRUE if the connection was updated (whether or not it is valid), or FALSE if the new settings could not be deserialized and the connection is unchanged.
2014-09-15 14:05:52 -04:00
nm_connection_replace_settings_from_connection (connection, replacement);
s_con = nm_connection_get_setting_connection (connection);
g_assert (s_con);
g_assert_cmpstr (nm_setting_connection_get_id (s_con), ==, expected_id);
g_assert_cmpstr (nm_setting_connection_get_uuid (s_con), ==, uuid);
g_assert (!nm_connection_get_setting_wired (connection));
g_assert (!nm_connection_get_setting_ip6_config (connection));
g_assert (nm_connection_get_setting_wireless (connection));
g_free (uuid);
g_object_unref (replacement);
g_object_unref (connection);
}
static void
test_connection_replace_settings_bad (void)
{
libnm-core: fix up connection deserialize/copy/replace semantics libnm-util's connection deserializing/copying/replacing functions have odd semantics where sometimes they both modify a connection AND return an error. libnm-core tried to improve things by guaranteeing that the connection would not be modified if the new settings were invalid, but this ended up breaking a bunch of places that needed to be able to work with invalid connections. So re-fix the functions by reverting back to the old semantics, but having return values that clearly distinguish whether the connection was modified or not. For comparison: - nm_connection_new_from_hash() / nm_simple_connection_new_from_dbus(): - libnm-util: returns a valid connection or NULL. - OLD libnm-core: returned a valid connection or NULL. - NEW libnm-core: returns a valid connection or NULL. - nm_connection_duplicate() / nm_simple_connection_new_clone(): - libnm-util: always succeeds, whether or not the connection is valid. - OLD libnm-core: returned a valid connection or NULL - NEW libnm-core: always succeeds, whether or not the connection is valid. - nm_connection_replace_settings_from_connection(): - libnm-util: always replaces the settings, but returns FALSE if the connection is now invalid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: always replaces the settings, and has no return value. (The modified connection is valid if and only if the replaced-from connection was valid; just like with the libnm-util version.) - nm_connection_replace_settings(): - libnm-util: returns TRUE if the new settings are valid, or FALSE if either (a) the new settings could not be deserialized and the connection is unchanged, or (b) the new settings were deserialized, and the connection was updated, but is now not valid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: returns TRUE if the connection was updated (whether or not it is valid), or FALSE if the new settings could not be deserialized and the connection is unchanged.
2014-09-15 14:05:52 -04:00
NMConnection *connection, *new_connection;
GVariant *new_settings;
GVariantBuilder builder, setting_builder;
GError *error = NULL;
gboolean success;
NMSettingConnection *s_con;
new_connection = new_test_connection ();
g_assert (nm_connection_verify (new_connection, NULL));
s_con = nm_connection_get_setting_connection (new_connection);
g_object_set (s_con,
NM_SETTING_CONNECTION_UUID, NULL,
NM_SETTING_CONNECTION_ID, "bad-connection",
NULL);
g_assert (!nm_connection_verify (new_connection, NULL));
libnm-core: fix up connection deserialize/copy/replace semantics libnm-util's connection deserializing/copying/replacing functions have odd semantics where sometimes they both modify a connection AND return an error. libnm-core tried to improve things by guaranteeing that the connection would not be modified if the new settings were invalid, but this ended up breaking a bunch of places that needed to be able to work with invalid connections. So re-fix the functions by reverting back to the old semantics, but having return values that clearly distinguish whether the connection was modified or not. For comparison: - nm_connection_new_from_hash() / nm_simple_connection_new_from_dbus(): - libnm-util: returns a valid connection or NULL. - OLD libnm-core: returned a valid connection or NULL. - NEW libnm-core: returns a valid connection or NULL. - nm_connection_duplicate() / nm_simple_connection_new_clone(): - libnm-util: always succeeds, whether or not the connection is valid. - OLD libnm-core: returned a valid connection or NULL - NEW libnm-core: always succeeds, whether or not the connection is valid. - nm_connection_replace_settings_from_connection(): - libnm-util: always replaces the settings, but returns FALSE if the connection is now invalid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: always replaces the settings, and has no return value. (The modified connection is valid if and only if the replaced-from connection was valid; just like with the libnm-util version.) - nm_connection_replace_settings(): - libnm-util: returns TRUE if the new settings are valid, or FALSE if either (a) the new settings could not be deserialized and the connection is unchanged, or (b) the new settings were deserialized, and the connection was updated, but is now not valid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: returns TRUE if the connection was updated (whether or not it is valid), or FALSE if the new settings could not be deserialized and the connection is unchanged.
2014-09-15 14:05:52 -04:00
/* nm_connection_replace_settings_from_connection() should succeed */
connection = new_test_connection ();
nm_connection_replace_settings_from_connection (connection, new_connection);
g_assert_cmpstr (nm_connection_get_id (connection), ==, "bad-connection");
g_assert (!nm_connection_verify (connection, NULL));
g_object_unref (connection);
libnm-core: fix up connection deserialize/copy/replace semantics libnm-util's connection deserializing/copying/replacing functions have odd semantics where sometimes they both modify a connection AND return an error. libnm-core tried to improve things by guaranteeing that the connection would not be modified if the new settings were invalid, but this ended up breaking a bunch of places that needed to be able to work with invalid connections. So re-fix the functions by reverting back to the old semantics, but having return values that clearly distinguish whether the connection was modified or not. For comparison: - nm_connection_new_from_hash() / nm_simple_connection_new_from_dbus(): - libnm-util: returns a valid connection or NULL. - OLD libnm-core: returned a valid connection or NULL. - NEW libnm-core: returns a valid connection or NULL. - nm_connection_duplicate() / nm_simple_connection_new_clone(): - libnm-util: always succeeds, whether or not the connection is valid. - OLD libnm-core: returned a valid connection or NULL - NEW libnm-core: always succeeds, whether or not the connection is valid. - nm_connection_replace_settings_from_connection(): - libnm-util: always replaces the settings, but returns FALSE if the connection is now invalid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: always replaces the settings, and has no return value. (The modified connection is valid if and only if the replaced-from connection was valid; just like with the libnm-util version.) - nm_connection_replace_settings(): - libnm-util: returns TRUE if the new settings are valid, or FALSE if either (a) the new settings could not be deserialized and the connection is unchanged, or (b) the new settings were deserialized, and the connection was updated, but is now not valid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: returns TRUE if the connection was updated (whether or not it is valid), or FALSE if the new settings could not be deserialized and the connection is unchanged.
2014-09-15 14:05:52 -04:00
/* nm_connection_replace_settings() should succeed */
new_settings = nm_connection_to_dbus (new_connection, NM_CONNECTION_SERIALIZE_ALL);
g_assert (new_settings != NULL);
libnm-core: fix up connection deserialize/copy/replace semantics libnm-util's connection deserializing/copying/replacing functions have odd semantics where sometimes they both modify a connection AND return an error. libnm-core tried to improve things by guaranteeing that the connection would not be modified if the new settings were invalid, but this ended up breaking a bunch of places that needed to be able to work with invalid connections. So re-fix the functions by reverting back to the old semantics, but having return values that clearly distinguish whether the connection was modified or not. For comparison: - nm_connection_new_from_hash() / nm_simple_connection_new_from_dbus(): - libnm-util: returns a valid connection or NULL. - OLD libnm-core: returned a valid connection or NULL. - NEW libnm-core: returns a valid connection or NULL. - nm_connection_duplicate() / nm_simple_connection_new_clone(): - libnm-util: always succeeds, whether or not the connection is valid. - OLD libnm-core: returned a valid connection or NULL - NEW libnm-core: always succeeds, whether or not the connection is valid. - nm_connection_replace_settings_from_connection(): - libnm-util: always replaces the settings, but returns FALSE if the connection is now invalid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: always replaces the settings, and has no return value. (The modified connection is valid if and only if the replaced-from connection was valid; just like with the libnm-util version.) - nm_connection_replace_settings(): - libnm-util: returns TRUE if the new settings are valid, or FALSE if either (a) the new settings could not be deserialized and the connection is unchanged, or (b) the new settings were deserialized, and the connection was updated, but is now not valid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: returns TRUE if the connection was updated (whether or not it is valid), or FALSE if the new settings could not be deserialized and the connection is unchanged.
2014-09-15 14:05:52 -04:00
connection = new_test_connection ();
success = nm_connection_replace_settings (connection, new_settings, &error);
g_assert_no_error (error);
g_assert (success);
g_assert_cmpstr (nm_connection_get_id (connection), ==, "bad-connection");
g_assert (!nm_connection_verify (connection, NULL));
g_object_unref (connection);
g_variant_unref (new_settings);
libnm-core: fix up connection deserialize/copy/replace semantics libnm-util's connection deserializing/copying/replacing functions have odd semantics where sometimes they both modify a connection AND return an error. libnm-core tried to improve things by guaranteeing that the connection would not be modified if the new settings were invalid, but this ended up breaking a bunch of places that needed to be able to work with invalid connections. So re-fix the functions by reverting back to the old semantics, but having return values that clearly distinguish whether the connection was modified or not. For comparison: - nm_connection_new_from_hash() / nm_simple_connection_new_from_dbus(): - libnm-util: returns a valid connection or NULL. - OLD libnm-core: returned a valid connection or NULL. - NEW libnm-core: returns a valid connection or NULL. - nm_connection_duplicate() / nm_simple_connection_new_clone(): - libnm-util: always succeeds, whether or not the connection is valid. - OLD libnm-core: returned a valid connection or NULL - NEW libnm-core: always succeeds, whether or not the connection is valid. - nm_connection_replace_settings_from_connection(): - libnm-util: always replaces the settings, but returns FALSE if the connection is now invalid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: always replaces the settings, and has no return value. (The modified connection is valid if and only if the replaced-from connection was valid; just like with the libnm-util version.) - nm_connection_replace_settings(): - libnm-util: returns TRUE if the new settings are valid, or FALSE if either (a) the new settings could not be deserialized and the connection is unchanged, or (b) the new settings were deserialized, and the connection was updated, but is now not valid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: returns TRUE if the connection was updated (whether or not it is valid), or FALSE if the new settings could not be deserialized and the connection is unchanged.
2014-09-15 14:05:52 -04:00
/* But given an invalid dict, it should fail */
g_variant_builder_init (&builder, NM_VARIANT_TYPE_CONNECTION);
g_variant_builder_init (&setting_builder, NM_VARIANT_TYPE_SETTING);
g_variant_builder_add (&builder, "{sa{sv}}",
"ip-over-avian-carrier",
&setting_builder);
new_settings = g_variant_builder_end (&builder);
libnm-core: fix up connection deserialize/copy/replace semantics libnm-util's connection deserializing/copying/replacing functions have odd semantics where sometimes they both modify a connection AND return an error. libnm-core tried to improve things by guaranteeing that the connection would not be modified if the new settings were invalid, but this ended up breaking a bunch of places that needed to be able to work with invalid connections. So re-fix the functions by reverting back to the old semantics, but having return values that clearly distinguish whether the connection was modified or not. For comparison: - nm_connection_new_from_hash() / nm_simple_connection_new_from_dbus(): - libnm-util: returns a valid connection or NULL. - OLD libnm-core: returned a valid connection or NULL. - NEW libnm-core: returns a valid connection or NULL. - nm_connection_duplicate() / nm_simple_connection_new_clone(): - libnm-util: always succeeds, whether or not the connection is valid. - OLD libnm-core: returned a valid connection or NULL - NEW libnm-core: always succeeds, whether or not the connection is valid. - nm_connection_replace_settings_from_connection(): - libnm-util: always replaces the settings, but returns FALSE if the connection is now invalid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: always replaces the settings, and has no return value. (The modified connection is valid if and only if the replaced-from connection was valid; just like with the libnm-util version.) - nm_connection_replace_settings(): - libnm-util: returns TRUE if the new settings are valid, or FALSE if either (a) the new settings could not be deserialized and the connection is unchanged, or (b) the new settings were deserialized, and the connection was updated, but is now not valid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: returns TRUE if the connection was updated (whether or not it is valid), or FALSE if the new settings could not be deserialized and the connection is unchanged.
2014-09-15 14:05:52 -04:00
connection = new_test_connection ();
success = nm_connection_replace_settings (connection, new_settings, &error);
libnm-core: fix up connection deserialize/copy/replace semantics libnm-util's connection deserializing/copying/replacing functions have odd semantics where sometimes they both modify a connection AND return an error. libnm-core tried to improve things by guaranteeing that the connection would not be modified if the new settings were invalid, but this ended up breaking a bunch of places that needed to be able to work with invalid connections. So re-fix the functions by reverting back to the old semantics, but having return values that clearly distinguish whether the connection was modified or not. For comparison: - nm_connection_new_from_hash() / nm_simple_connection_new_from_dbus(): - libnm-util: returns a valid connection or NULL. - OLD libnm-core: returned a valid connection or NULL. - NEW libnm-core: returns a valid connection or NULL. - nm_connection_duplicate() / nm_simple_connection_new_clone(): - libnm-util: always succeeds, whether or not the connection is valid. - OLD libnm-core: returned a valid connection or NULL - NEW libnm-core: always succeeds, whether or not the connection is valid. - nm_connection_replace_settings_from_connection(): - libnm-util: always replaces the settings, but returns FALSE if the connection is now invalid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: always replaces the settings, and has no return value. (The modified connection is valid if and only if the replaced-from connection was valid; just like with the libnm-util version.) - nm_connection_replace_settings(): - libnm-util: returns TRUE if the new settings are valid, or FALSE if either (a) the new settings could not be deserialized and the connection is unchanged, or (b) the new settings were deserialized, and the connection was updated, but is now not valid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: returns TRUE if the connection was updated (whether or not it is valid), or FALSE if the new settings could not be deserialized and the connection is unchanged.
2014-09-15 14:05:52 -04:00
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_SETTING);
g_clear_error (&error);
g_assert (!success);
libnm-core: fix up connection deserialize/copy/replace semantics libnm-util's connection deserializing/copying/replacing functions have odd semantics where sometimes they both modify a connection AND return an error. libnm-core tried to improve things by guaranteeing that the connection would not be modified if the new settings were invalid, but this ended up breaking a bunch of places that needed to be able to work with invalid connections. So re-fix the functions by reverting back to the old semantics, but having return values that clearly distinguish whether the connection was modified or not. For comparison: - nm_connection_new_from_hash() / nm_simple_connection_new_from_dbus(): - libnm-util: returns a valid connection or NULL. - OLD libnm-core: returned a valid connection or NULL. - NEW libnm-core: returns a valid connection or NULL. - nm_connection_duplicate() / nm_simple_connection_new_clone(): - libnm-util: always succeeds, whether or not the connection is valid. - OLD libnm-core: returned a valid connection or NULL - NEW libnm-core: always succeeds, whether or not the connection is valid. - nm_connection_replace_settings_from_connection(): - libnm-util: always replaces the settings, but returns FALSE if the connection is now invalid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: always replaces the settings, and has no return value. (The modified connection is valid if and only if the replaced-from connection was valid; just like with the libnm-util version.) - nm_connection_replace_settings(): - libnm-util: returns TRUE if the new settings are valid, or FALSE if either (a) the new settings could not be deserialized and the connection is unchanged, or (b) the new settings were deserialized, and the connection was updated, but is now not valid. - OLD libnm-core: either replaced the settings and returned TRUE (if the settings were valid), or else left the connection unchanged and returned FALSE (if not). - NEW libnm-core: returns TRUE if the connection was updated (whether or not it is valid), or FALSE if the new settings could not be deserialized and the connection is unchanged.
2014-09-15 14:05:52 -04:00
g_assert (nm_connection_verify (connection, NULL));
g_object_unref (connection);
g_variant_unref (new_settings);
g_object_unref (new_connection);
}
static void
test_connection_new_from_dbus (void)
{
NMConnection *connection;
GVariant *new_settings;
GError *error = NULL;
NMSettingConnection *s_con;
NMSettingIPConfig *s_ip6;
char *uuid = NULL;
const char *expected_id = NULL, *expected_method = NULL;
new_settings = new_connection_dict (&uuid, &expected_id, &expected_method);
g_assert (new_settings);
/* Replace settings and test */
connection = _connection_new_from_dbus (new_settings, &error);
g_assert_no_error (error);
g_assert (connection);
s_con = nm_connection_get_setting_connection (connection);
g_assert (s_con);
g_assert_cmpstr (nm_setting_connection_get_id (s_con), ==, expected_id);
g_assert_cmpstr (nm_setting_connection_get_uuid (s_con), ==, uuid);
g_assert (nm_connection_get_setting_wired (connection));
g_assert (nm_connection_get_setting_ip4_config (connection));
s_ip6 = nm_connection_get_setting_ip6_config (connection);
g_assert (s_ip6);
g_assert_cmpstr (nm_setting_ip_config_get_method (s_ip6), ==, expected_method);
g_free (uuid);
g_variant_unref (new_settings);
g_object_unref (connection);
}
static void
check_permission (NMSettingConnection *s_con,
guint32 idx,
const char *expected_uname)
{
gboolean success;
const char *ptype = NULL, *pitem = NULL, *detail = NULL;
success = nm_setting_connection_get_permission (s_con, 0, &ptype, &pitem, &detail);
g_assert (success);
g_assert_cmpstr (ptype, ==, "user");
g_assert (pitem);
g_assert_cmpstr (pitem, ==, expected_uname);
g_assert (!detail);
}
#define TEST_UNAME "asdfasfasdf"
static void
test_setting_connection_permissions_helpers (void)
{
NMSettingConnection *s_con;
gboolean success;
char buf[9] = { 0x61, 0x62, 0x63, 0xff, 0xfe, 0xfd, 0x23, 0x01, 0x00 };
char **perms;
const char *expected_perm = "user:" TEST_UNAME ":";
s_con = NM_SETTING_CONNECTION (nm_setting_connection_new ());
/* Ensure a bad [type] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (strcmp (ptype, "user") == 0));
success = nm_setting_connection_add_permission (s_con, "foobar", "blah", NULL);
g_test_assert_expected_messages ();
g_assert (!success);
/* Ensure a bad [type] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (ptype && ptype[0]));
success = nm_setting_connection_add_permission (s_con, NULL, "blah", NULL);
g_test_assert_expected_messages ();
g_assert (!success);
/* Ensure a bad [item] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (uname));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (p != NULL));
success = nm_setting_connection_add_permission (s_con, "user", NULL, NULL);
g_test_assert_expected_messages ();
g_assert (!success);
/* Ensure a bad [item] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (uname[0] != '\0'));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (p != NULL));
success = nm_setting_connection_add_permission (s_con, "user", "", NULL);
g_test_assert_expected_messages ();
g_assert (!success);
/* Ensure an [item] with ':' is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (strchr (uname, ':') == NULL));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (p != NULL));
success = nm_setting_connection_add_permission (s_con, "user", "ad:asdf", NULL);
g_test_assert_expected_messages ();
g_assert (!success);
/* Ensure a non-UTF-8 [item] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (g_utf8_validate (uname, -1, NULL) == TRUE));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (p != NULL));
success = nm_setting_connection_add_permission (s_con, "user", buf, NULL);
g_test_assert_expected_messages ();
g_assert (!success);
/* Ensure a non-NULL [detail] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (detail == NULL));
success = nm_setting_connection_add_permission (s_con, "user", "dafasdf", "asdf");
g_test_assert_expected_messages ();
g_assert (!success);
/* Ensure a valid call results in success */
success = nm_setting_connection_add_permission (s_con, "user", TEST_UNAME, NULL);
g_assert (success);
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 1);
check_permission (s_con, 0, TEST_UNAME);
/* Check the actual GObject property just to be paranoid */
g_object_get (G_OBJECT (s_con), NM_SETTING_CONNECTION_PERMISSIONS, &perms, NULL);
g_assert (perms);
g_assert_cmpint (g_strv_length (perms), ==, 1);
g_assert_cmpstr (perms[0], ==, expected_perm);
g_strfreev (perms);
/* Now remove that permission and ensure we have 0 permissions */
nm_setting_connection_remove_permission (s_con, 0);
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
g_object_unref (s_con);
}
static void
add_permission_property (NMSettingConnection *s_con,
const char *ptype,
const char *pitem,
int pitem_len,
const char *detail)
{
GString *str;
char *perms[2];
str = g_string_sized_new (50);
if (ptype)
g_string_append (str, ptype);
g_string_append_c (str, ':');
if (pitem) {
if (pitem_len >= 0)
g_string_append_len (str, pitem, pitem_len);
else
g_string_append (str, pitem);
}
g_string_append_c (str, ':');
if (detail)
g_string_append (str, detail);
perms[0] = str->str;
perms[1] = NULL;
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_PERMISSIONS, perms, NULL);
g_string_free (str, TRUE);
}
static void
test_setting_connection_permissions_property (void)
{
NMSettingConnection *s_con;
gboolean success;
char buf[9] = { 0x61, 0x62, 0x63, 0xff, 0xfe, 0xfd, 0x23, 0x01, 0x00 };
s_con = NM_SETTING_CONNECTION (nm_setting_connection_new ());
/* Ensure a bad [type] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (strncmp (str, PERM_USER_PREFIX, strlen (PERM_USER_PREFIX)) == 0));
add_permission_property (s_con, "foobar", "blah", -1, NULL);
g_test_assert_expected_messages ();
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
/* Ensure a bad [type] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (strncmp (str, PERM_USER_PREFIX, strlen (PERM_USER_PREFIX)) == 0));
add_permission_property (s_con, NULL, "blah", -1, NULL);
g_test_assert_expected_messages ();
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
/* Ensure a bad [item] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (last_colon > str));
add_permission_property (s_con, "user", NULL, -1, NULL);
g_test_assert_expected_messages ();
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
/* Ensure a bad [item] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (last_colon > str));
add_permission_property (s_con, "user", "", -1, NULL);
g_test_assert_expected_messages ();
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
/* Ensure an [item] with ':' in the middle is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (str[i] != ':'));
add_permission_property (s_con, "user", "ad:asdf", -1, NULL);
g_test_assert_expected_messages ();
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
/* Ensure an [item] with ':' at the end is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (str[i] != ':'));
add_permission_property (s_con, "user", "adasdfaf:", -1, NULL);
g_test_assert_expected_messages ();
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
/* Ensure a non-UTF-8 [item] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (g_utf8_validate (str, -1, NULL) == TRUE));
add_permission_property (s_con, "user", buf, (int) sizeof (buf), NULL);
g_test_assert_expected_messages ();
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
/* Ensure a non-NULL [detail] is rejected */
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (*(last_colon + 1) == '\0'));
add_permission_property (s_con, "user", "dafasdf", -1, "asdf");
g_test_assert_expected_messages ();
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
/* Ensure a valid call results in success */
success = nm_setting_connection_add_permission (s_con, "user", TEST_UNAME, NULL);
g_assert (success);
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 1);
check_permission (s_con, 0, TEST_UNAME);
/* Now remove that permission and ensure we have 0 permissions */
nm_setting_connection_remove_permission (s_con, 0);
g_assert_cmpint (nm_setting_connection_get_num_permissions (s_con), ==, 0);
g_object_unref (s_con);
}
static void
test_connection_compare_same (void)
{
NMConnection *a, *b;
a = new_test_connection ();
b = nm_simple_connection_new_clone (a);
g_assert (nm_connection_compare (a, b, NM_SETTING_COMPARE_FLAG_EXACT));
g_object_unref (a);
g_object_unref (b);
}
static void
test_connection_compare_key_only_in_a (void)
{
NMConnection *a, *b;
NMSettingConnection *s_con;
a = new_test_connection ();
b = nm_simple_connection_new_clone (a);
s_con = (NMSettingConnection *) nm_connection_get_setting (b, NM_TYPE_SETTING_CONNECTION);
g_assert (s_con);
g_object_set (s_con, NM_SETTING_CONNECTION_TIMESTAMP, (guint64) 0, NULL);
g_assert (!nm_connection_compare (a, b, NM_SETTING_COMPARE_FLAG_EXACT));
g_object_unref (a);
g_object_unref (b);
}
static void
test_connection_compare_setting_only_in_a (void)
{
NMConnection *a, *b;
a = new_test_connection ();
b = nm_simple_connection_new_clone (a);
nm_connection_remove_setting (b, NM_TYPE_SETTING_IP4_CONFIG);
g_assert (!nm_connection_compare (a, b, NM_SETTING_COMPARE_FLAG_EXACT));
g_object_unref (a);
g_object_unref (b);
}
static void
test_connection_compare_key_only_in_b (void)
{
NMConnection *a, *b;
NMSettingConnection *s_con;
a = new_test_connection ();
b = nm_simple_connection_new_clone (a);
s_con = (NMSettingConnection *) nm_connection_get_setting (b, NM_TYPE_SETTING_CONNECTION);
g_assert (s_con);
g_object_set (s_con, NM_SETTING_CONNECTION_TIMESTAMP, (guint64) 0, NULL);
g_assert (!nm_connection_compare (a, b, NM_SETTING_COMPARE_FLAG_EXACT));
g_object_unref (a);
g_object_unref (b);
}
static void
test_connection_compare_setting_only_in_b (void)
{
NMConnection *a, *b;
a = new_test_connection ();
b = nm_simple_connection_new_clone (a);
nm_connection_remove_setting (a, NM_TYPE_SETTING_IP4_CONFIG);
g_assert (!nm_connection_compare (a, b, NM_SETTING_COMPARE_FLAG_EXACT));
g_object_unref (a);
g_object_unref (b);
}
typedef struct {
const char *key_name;
guint32 result;
} DiffKey;
typedef struct {
const char *name;
DiffKey keys[30];
} DiffSetting;
#define ARRAY_LEN(a) (sizeof (a) / sizeof (a[0]))
static void
ensure_diffs (GHashTable *diffs, const DiffSetting *check, gsize n_check)
{
guint i;
g_assert (g_hash_table_size (diffs) == n_check);
/* Loop through the settings */
for (i = 0; i < n_check; i++) {
GHashTable *setting_hash;
guint z = 0;
setting_hash = g_hash_table_lookup (diffs, check[i].name);
g_assert (setting_hash);
/* Get the number of keys to check */
while (check[i].keys[z].key_name)
z++;
g_assert (g_hash_table_size (setting_hash) == z);
/* Now compare the actual keys */
for (z = 0; check[i].keys[z].key_name; z++) {
NMSettingDiffResult result;
result = GPOINTER_TO_UINT (g_hash_table_lookup (setting_hash, check[i].keys[z].key_name));
g_assert (result == check[i].keys[z].result);
}
}
}
static void
test_connection_diff_a_only (void)
{
NMConnection *connection;
GHashTable *out_diffs = NULL;
gboolean same;
const DiffSetting settings[] = {
{ NM_SETTING_CONNECTION_SETTING_NAME, {
{ NM_SETTING_CONNECTION_ID, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_UUID, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_STABLE_ID, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_INTERFACE_NAME, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_TYPE, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_TIMESTAMP, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_AUTOCONNECT, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_AUTOCONNECT_PRIORITY, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_AUTOCONNECT_RETRIES, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_MULTI_CONNECT, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_READ_ONLY, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_PERMISSIONS, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_ZONE, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_MASTER, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_AUTOCONNECT_SLAVES, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_SECONDARIES, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_GATEWAY_PING_TIMEOUT, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_METERED, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_LLDP, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_AUTH_RETRIES, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_MDNS, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_LLMNR, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_MUD_URL, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_CONNECTION_WAIT_DEVICE_TIMEOUT, NM_SETTING_DIFF_RESULT_IN_A },
{ NULL, NM_SETTING_DIFF_RESULT_UNKNOWN }
} },
{ NM_SETTING_WIRED_SETTING_NAME, {
{ NM_SETTING_WIRED_PORT, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_SPEED, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_DUPLEX, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_AUTO_NEGOTIATE, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_MAC_ADDRESS, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_CLONED_MAC_ADDRESS, NM_SETTING_DIFF_RESULT_IN_A },
all: make MAC address randomization algorithm configurable For the per-connection settings "ethernet.cloned-mac-address" and "wifi.cloned-mac-address", and for the per-device setting "wifi.scan-rand-mac-address", we may generate MAC addresses using either the "random" or "stable" algorithm. Add new properties "generate-mac-address-mask" that allow to configure which bits of the MAC address will be scrambled. By default, the "random" and "stable" algorithms scamble all bits of the MAC address, including the OUI part and generate a locally- administered, unicast address. By specifying a MAC address mask, we can now configure to perserve parts of the current MAC address of the device. For example, setting "FF:FF:FF:00:00:00" will preserve the first 3 octects of the current MAC address. One can also explicitly specify a MAC address to use instead of the current MAC address. For example, "FF:FF:FF:00:00:00 68:F7:28:00:00:00" sets the OUI part of the MAC address to "68:F7:28" while scrambling the last 3 octects. Similarly, "02:00:00:00:00:00 00:00:00:00:00:00" will scamble all bits of the MAC address, except clearing the second-least significant bit. Thus, creating a burned-in address, globally administered. One can also supply a list of MAC addresses like "FF:FF:FF:00:00:00 68:F7:28:00:00:00 00:0C:29:00:00:00 ..." in which case a MAC address is choosen randomly. To fully scamble the MAC address one can configure "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00". which also randomly creates either a locally or globally administered address. With this, the following macchanger options can be implemented: `macchanger --random` This is the default if no mask is configured. -> "" while is the same as: -> "00:00:00:00:00:00" -> "02:00:00:00:00:00 02:00:00:00:00:00" `macchanger --random --bia` -> "02:00:00:00:00:00 00:00:00:00:00:00" `macchanger --ending` This option cannot be fully implemented, because macchanger uses the current MAC address but also implies --bia. -> "FF:FF:FF:00:00:00" This would yields the same result only if the current MAC address is already a burned-in address too. Otherwise, it has not the same effect as --ending. -> "FF:FF:FF:00:00:00 <MAC_ADDR>" Alternatively, instead of using the current MAC address, spell the OUI part out. But again, that is not really the same as macchanger does because you explictly have to name the OUI part to use. `machanger --another` `machanger --another_any` -> "FF:FF:FF:00:00:00 <MAC_ADDR> <MAC_ADDR> ..." "$(printf "FF:FF:FF:00:00:00 %s\n" "$(sed -n 's/^\([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) .*/\1:\2:\3:00:00:00/p' /usr/share/macchanger/wireless.list | xargs)")"
2016-06-22 20:31:39 +02:00
{ NM_SETTING_WIRED_GENERATE_MAC_ADDRESS_MASK, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_MAC_ADDRESS_BLACKLIST, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_MTU, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_S390_SUBCHANNELS, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_S390_NETTYPE, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_S390_OPTIONS, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_WAKE_ON_LAN, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_WIRED_WAKE_ON_LAN_PASSWORD, NM_SETTING_DIFF_RESULT_IN_A },
{ NULL, NM_SETTING_DIFF_RESULT_UNKNOWN },
} },
{ NM_SETTING_IP4_CONFIG_SETTING_NAME, {
{ NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DNS, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DNS_SEARCH, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DNS_OPTIONS, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_ADDRESSES, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_GATEWAY, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_ROUTES, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_ROUTE_METRIC, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_ROUTE_TABLE, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_ROUTING_RULES, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_IGNORE_AUTO_ROUTES, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_IGNORE_AUTO_DNS, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP4_CONFIG_DHCP_CLIENT_ID, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DHCP_TIMEOUT, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DHCP_SEND_HOSTNAME, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DHCP_HOSTNAME, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DHCP_HOSTNAME_FLAGS,NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP4_CONFIG_DHCP_FQDN, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_NEVER_DEFAULT, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_MAY_FAIL, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DAD_TIMEOUT, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DNS_PRIORITY, NM_SETTING_DIFF_RESULT_IN_A },
{ NM_SETTING_IP_CONFIG_DHCP_IAID, NM_SETTING_DIFF_RESULT_IN_A },
{ NULL, NM_SETTING_DIFF_RESULT_UNKNOWN },
} },
};
connection = new_test_connection ();
same = nm_connection_diff (connection, NULL, NM_SETTING_COMPARE_FLAG_EXACT, &out_diffs);
g_assert (same == FALSE);
g_assert (out_diffs != NULL);
g_assert (g_hash_table_size (out_diffs) > 0);
ensure_diffs (out_diffs, settings, ARRAY_LEN (settings));
g_hash_table_destroy (out_diffs);
g_object_unref (connection);
}
static void
test_connection_diff_same (void)
{
NMConnection *a, *b;
GHashTable *out_diffs = NULL;
gboolean same;
a = new_test_connection ();
b = nm_simple_connection_new_clone (a);
same = nm_connection_diff (a, b, NM_SETTING_COMPARE_FLAG_EXACT, &out_diffs);
g_assert (same == TRUE);
g_assert (out_diffs == NULL);
g_object_unref (a);
g_object_unref (b);
}
static void
test_connection_diff_different (void)
{
NMConnection *a, *b;
GHashTable *out_diffs = NULL;
NMSettingIPConfig *s_ip4;
gboolean same;
const DiffSetting settings[] = {
{ NM_SETTING_IP4_CONFIG_SETTING_NAME, {
{ NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_DIFF_RESULT_IN_A | NM_SETTING_DIFF_RESULT_IN_B },
{ NULL, NM_SETTING_DIFF_RESULT_UNKNOWN },
} },
};
a = new_test_connection ();
b = nm_simple_connection_new_clone (a);
s_ip4 = nm_connection_get_setting_ip4_config (a);
g_assert (s_ip4);
g_object_set (G_OBJECT (s_ip4),
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_MANUAL,
NULL);
same = nm_connection_diff (a, b, NM_SETTING_COMPARE_FLAG_EXACT, &out_diffs);
g_assert (same == FALSE);
g_assert (out_diffs != NULL);
g_assert (g_hash_table_size (out_diffs) > 0);
ensure_diffs (out_diffs, settings, ARRAY_LEN (settings));
g_hash_table_destroy (out_diffs);
g_object_unref (a);
g_object_unref (b);
}
static void
test_connection_diff_no_secrets (void)
{
NMConnection *a, *b;
GHashTable *out_diffs = NULL;
NMSetting *s_pppoe;
gboolean same;
const DiffSetting settings[] = {
{ NM_SETTING_PPPOE_SETTING_NAME, {
{ NM_SETTING_PPPOE_PASSWORD, NM_SETTING_DIFF_RESULT_IN_B },
{ NULL, NM_SETTING_DIFF_RESULT_UNKNOWN },
} },
};
a = new_test_connection ();
s_pppoe = nm_setting_pppoe_new ();
g_object_set (G_OBJECT (s_pppoe),
NM_SETTING_PPPOE_USERNAME, "thomas",
NULL);
nm_connection_add_setting (a, s_pppoe);
b = nm_simple_connection_new_clone (a);
/* Add a secret to B */
s_pppoe = NM_SETTING (nm_connection_get_setting_pppoe (b));
g_assert (s_pppoe);
g_object_set (G_OBJECT (s_pppoe),
NM_SETTING_PPPOE_PASSWORD, "secretpassword",
NULL);
/* Make sure the diff returns no results as secrets are ignored */
same = nm_connection_diff (a, b, NM_SETTING_COMPARE_FLAG_IGNORE_SECRETS, &out_diffs);
g_assert (same == TRUE);
g_assert (out_diffs == NULL);
/* Now make sure the diff returns results if secrets are not ignored */
same = nm_connection_diff (a, b, NM_SETTING_COMPARE_FLAG_EXACT, &out_diffs);
g_assert (same == FALSE);
g_assert (out_diffs != NULL);
g_assert (g_hash_table_size (out_diffs) > 0);
ensure_diffs (out_diffs, settings, ARRAY_LEN (settings));
g_hash_table_destroy (out_diffs);
g_object_unref (a);
g_object_unref (b);
}
static void
test_connection_diff_inferrable (void)
{
NMConnection *a, *b;
GHashTable *out_diffs = NULL;
gboolean same;
NMSettingConnection *s_con;
NMSettingWired *s_wired;
NMSettingIPConfig *s_ip4;
char *uuid;
const DiffSetting settings[] = {
{ NM_SETTING_CONNECTION_SETTING_NAME, {
{ NM_SETTING_CONNECTION_INTERFACE_NAME, NM_SETTING_DIFF_RESULT_IN_A },
{ NULL, NM_SETTING_DIFF_RESULT_UNKNOWN },
} },
};
a = new_test_connection ();
b = nm_simple_connection_new_clone (a);
/* Change the UUID, wired MTU, and set ignore-auto-dns */
s_con = nm_connection_get_setting_connection (a);
g_assert (s_con);
uuid = nm_utils_uuid_generate ();
g_object_set (G_OBJECT (s_con),
NM_SETTING_CONNECTION_UUID, uuid,
NM_SETTING_CONNECTION_ID, "really neat connection",
NULL);
g_free (uuid);
s_wired = nm_connection_get_setting_wired (a);
g_assert (s_wired);
g_object_set (G_OBJECT (s_wired), NM_SETTING_WIRED_MTU, 300, NULL);
s_ip4 = nm_connection_get_setting_ip4_config (a);
g_assert (s_ip4);
g_object_set (G_OBJECT (s_ip4), NM_SETTING_IP_CONFIG_IGNORE_AUTO_DNS, TRUE, NULL);
/* Make sure the diff returns no results as secrets are ignored */
same = nm_connection_diff (a, b, NM_SETTING_COMPARE_FLAG_INFERRABLE, &out_diffs);
g_assert (same == TRUE);
g_assert (out_diffs == NULL);
/* And change a INFERRABLE property to ensure that it shows up in the diff results */
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_INTERFACE_NAME, "usb0", NULL);
/* Make sure the diff returns no results as secrets are ignored */
same = nm_connection_diff (a, b, NM_SETTING_COMPARE_FLAG_INFERRABLE, &out_diffs);
g_assert (same == FALSE);
g_assert (out_diffs != NULL);
g_assert (g_hash_table_size (out_diffs) > 0);
ensure_diffs (out_diffs, settings, ARRAY_LEN (settings));
g_hash_table_destroy (out_diffs);
g_object_unref (a);
g_object_unref (b);
}
static void
add_generic_settings (NMConnection *connection, const char *ctype)
{
NMSetting *setting;
char *uuid;
uuid = nm_utils_uuid_generate ();
setting = nm_setting_connection_new ();
g_object_set (setting,
NM_SETTING_CONNECTION_ID, "asdfasdfadf",
NM_SETTING_CONNECTION_TYPE, ctype,
NM_SETTING_CONNECTION_UUID, uuid,
NULL);
nm_connection_add_setting (connection, setting);
g_free (uuid);
setting = nm_setting_ip4_config_new ();
g_object_set (setting, NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_AUTO, NULL);
nm_connection_add_setting (connection, setting);
setting = nm_setting_ip6_config_new ();
g_object_set (setting, NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP6_CONFIG_METHOD_AUTO, NULL);
nm_connection_add_setting (connection, setting);
}
static void
test_connection_good_base_types (void)
{
NMConnection *connection;
NMSetting *setting;
gboolean success;
GError *error = NULL;
GBytes *ssid;
const char *bdaddr = "11:22:33:44:55:66";
/* Try a basic wired connection */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_WIRED_SETTING_NAME);
setting = nm_setting_wired_new ();
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
g_assert_no_error (error);
g_assert (success);
g_object_unref (connection);
/* Try a wired PPPoE connection */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_PPPOE_SETTING_NAME);
setting = nm_setting_pppoe_new ();
g_object_set (setting, NM_SETTING_PPPOE_USERNAME, "bob smith", NULL);
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
g_assert_no_error (error);
g_assert (success);
g_object_unref (connection);
/* Wifi connection */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_WIRELESS_SETTING_NAME);
setting = nm_setting_wireless_new ();
ssid = g_bytes_new ("1234567", 7);
g_object_set (setting,
NM_SETTING_WIRELESS_SSID, ssid,
NM_SETTING_WIRELESS_MODE, "infrastructure",
NULL);
g_bytes_unref (ssid);
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
g_assert_no_error (error);
g_assert (success);
g_object_unref (connection);
/* Bluetooth connection */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_BLUETOOTH_SETTING_NAME);
setting = nm_setting_bluetooth_new ();
g_object_set (setting,
NM_SETTING_BLUETOOTH_BDADDR, bdaddr,
NM_SETTING_CONNECTION_TYPE, NM_SETTING_BLUETOOTH_TYPE_PANU,
NULL);
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
g_assert_no_error (error);
g_assert (success);
g_object_unref (connection);
/* WiMAX connection */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_WIMAX_SETTING_NAME);
setting = nm_setting_wimax_new ();
g_object_set (setting, NM_SETTING_WIMAX_NETWORK_NAME, "CLEAR", NULL);
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
g_assert_no_error (error);
g_assert (success);
g_object_unref (connection);
/* GSM connection */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_GSM_SETTING_NAME);
setting = nm_setting_gsm_new ();
g_object_set (setting,
NM_SETTING_GSM_APN, "metered.billing.sucks",
NULL);
nm_connection_add_setting (connection, setting);
/* CDMA connection */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_CDMA_SETTING_NAME);
setting = nm_setting_cdma_new ();
g_object_set (setting,
NM_SETTING_CDMA_NUMBER, "#777",
NM_SETTING_CDMA_USERNAME, "foobar@vzw.com",
NULL);
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
g_assert_no_error (error);
g_assert (success);
g_object_unref (connection);
}
static void
test_connection_bad_base_types (void)
{
NMConnection *connection;
NMSetting *setting;
gboolean success;
GError *error = NULL;
/* Test various non-base connection types to make sure they are rejected;
* using a fake 'wired' connection so the rest of it verifies
*/
/* Connection setting */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_CONNECTION_SETTING_NAME);
setting = nm_setting_wired_new ();
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "connection.type: "));
g_assert (success == FALSE);
g_object_unref (connection);
g_clear_error (&error);
/* PPP setting */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_PPP_SETTING_NAME);
setting = nm_setting_wired_new ();
nm_connection_add_setting (connection, setting);
setting = nm_setting_ppp_new ();
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "connection.type: "));
g_assert (success == FALSE);
g_object_unref (connection);
g_clear_error (&error);
/* Serial setting */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_SERIAL_SETTING_NAME);
setting = nm_setting_wired_new ();
nm_connection_add_setting (connection, setting);
setting = nm_setting_serial_new ();
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "connection.type: "));
g_assert (success == FALSE);
g_object_unref (connection);
g_clear_error (&error);
/* IP4 setting */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_IP4_CONFIG_SETTING_NAME);
setting = nm_setting_wired_new ();
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "connection.type: "));
g_assert (success == FALSE);
g_object_unref (connection);
g_clear_error (&error);
/* IP6 setting */
connection = nm_simple_connection_new ();
add_generic_settings (connection, NM_SETTING_IP6_CONFIG_SETTING_NAME);
setting = nm_setting_wired_new ();
nm_connection_add_setting (connection, setting);
success = nm_connection_verify (connection, &error);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (g_str_has_prefix (error->message, "connection.type: "));
g_assert (success == FALSE);
g_object_unref (connection);
g_clear_error (&error);
}
static void
test_setting_compare_id (void)
{
gs_unref_object NMSetting *old = NULL, *new = NULL;
gboolean success;
old = nm_setting_connection_new ();
g_object_set (old,
NM_SETTING_CONNECTION_ID, "really awesome cool connection",
NM_SETTING_CONNECTION_UUID, "fbbd59d5-acab-4e30-8f86-258d272617e7",
NM_SETTING_CONNECTION_AUTOCONNECT, FALSE,
NULL);
new = nm_setting_duplicate (old);
g_object_set (new, NM_SETTING_CONNECTION_ID, "some different connection id", NULL);
/* First make sure they are different */
success = nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_EXACT);
g_assert (success == FALSE);
success = nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_IGNORE_ID);
g_assert (success);
}
static void
test_setting_compare_addresses (void)
{
gs_unref_object NMSetting *s1 = NULL, *s2 = NULL;
gboolean success;
NMIPAddress *a;
GHashTable *result = NULL;
s1 = nm_setting_ip4_config_new ();
s2 = nm_setting_ip4_config_new ();
a = nm_ip_address_new (AF_INET, "192.168.7.5", 24, NULL);
nm_ip_address_set_attribute (a, NM_IP_ADDRESS_ATTRIBUTE_LABEL, g_variant_new_string ("xoxoxo"));
nm_setting_ip_config_add_address ((NMSettingIPConfig *) s1, a);
nm_ip_address_set_attribute (a, NM_IP_ADDRESS_ATTRIBUTE_LABEL, g_variant_new_string ("hello"));
nm_setting_ip_config_add_address ((NMSettingIPConfig *) s2, a);
nm_ip_address_unref (a);
if (nmtst_get_rand_uint32 () % 2)
NM_SWAP (s1, s2);
success = nm_setting_compare (s1, s2, NM_SETTING_COMPARE_FLAG_EXACT);
g_assert (!success);
success = nm_setting_diff (s1, s2, NM_SETTING_COMPARE_FLAG_EXACT, FALSE, &result);
g_assert (!success);
nm_clear_pointer (&result, g_hash_table_unref);
}
static void
test_setting_compare_routes (void)
{
gs_unref_object NMSetting *s1 = NULL, *s2 = NULL;
gboolean success;
NMIPRoute *r;
GHashTable *result = NULL;
s1 = nm_setting_ip4_config_new ();
s2 = nm_setting_ip4_config_new ();
r = nm_ip_route_new (AF_INET, "192.168.12.0", 24, "192.168.11.1", 473, NULL);
nm_ip_route_set_attribute (r, NM_IP_ADDRESS_ATTRIBUTE_LABEL, g_variant_new_string ("xoxoxo"));
nm_setting_ip_config_add_route ((NMSettingIPConfig *) s1, r);
nm_ip_route_set_attribute (r, NM_IP_ADDRESS_ATTRIBUTE_LABEL, g_variant_new_string ("hello"));
nm_setting_ip_config_add_route ((NMSettingIPConfig *) s2, r);
nm_ip_route_unref (r);
if (nmtst_get_rand_uint32 () % 2)
NM_SWAP (s1, s2);
success = nm_setting_compare (s1, s2, NM_SETTING_COMPARE_FLAG_EXACT);
g_assert (!success);
success = nm_setting_diff (s1, s2, NM_SETTING_COMPARE_FLAG_EXACT, FALSE, &result);
g_assert (!success);
nm_clear_pointer (&result, g_hash_table_unref);
}
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
static void
test_setting_compare_wired_cloned_mac_address (void)
{
gs_unref_object NMSetting *old = NULL, *new = NULL;
gboolean success;
gs_free char *str1 = NULL;
old = nm_setting_wired_new ();
g_object_set (old,
NM_SETTING_WIRED_CLONED_MAC_ADDRESS, "stable",
NULL);
g_assert_cmpstr ("stable", ==, nm_setting_wired_get_cloned_mac_address ((NMSettingWired *) old));
g_object_get (old, NM_SETTING_WIRED_CLONED_MAC_ADDRESS, &str1, NULL);
g_assert_cmpstr ("stable", ==, str1);
nm_clear_g_free (&str1);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
new = nm_setting_duplicate (old);
g_object_set (new, NM_SETTING_WIRED_CLONED_MAC_ADDRESS, "11:22:33:44:55:66", NULL);
g_assert_cmpstr ("11:22:33:44:55:66", ==, nm_setting_wired_get_cloned_mac_address ((NMSettingWired *) new));
g_object_get (new, NM_SETTING_WIRED_CLONED_MAC_ADDRESS, &str1, NULL);
g_assert_cmpstr ("11:22:33:44:55:66", ==, str1);
nm_clear_g_free (&str1);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
success = nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_EXACT);
g_assert (!success);
g_clear_object (&new);
new = nm_setting_duplicate (old);
g_object_set (new, NM_SETTING_WIRED_CLONED_MAC_ADDRESS, "stable-bia", NULL);
g_assert_cmpstr ("stable-bia", ==, nm_setting_wired_get_cloned_mac_address ((NMSettingWired *) new));
g_object_get (new, NM_SETTING_WIRED_CLONED_MAC_ADDRESS, &str1, NULL);
g_assert_cmpstr ("stable-bia", ==, str1);
nm_clear_g_free (&str1);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
success = nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_EXACT);
g_assert (!success);
g_clear_object (&new);
}
static void
test_setting_compare_wireless_cloned_mac_address (void)
{
gs_unref_object NMSetting *old = NULL, *new = NULL;
gboolean success;
gs_free char *str1 = NULL;
old = nm_setting_wireless_new ();
g_object_set (old,
NM_SETTING_WIRELESS_CLONED_MAC_ADDRESS, "stable",
NULL);
g_assert_cmpstr ("stable", ==, nm_setting_wireless_get_cloned_mac_address ((NMSettingWireless *) old));
g_object_get (old, NM_SETTING_WIRELESS_CLONED_MAC_ADDRESS, &str1, NULL);
g_assert_cmpstr ("stable", ==, str1);
nm_clear_g_free (&str1);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
new = nm_setting_duplicate (old);
g_object_set (new, NM_SETTING_WIRELESS_CLONED_MAC_ADDRESS, "11:22:33:44:55:66", NULL);
g_assert_cmpstr ("11:22:33:44:55:66", ==, nm_setting_wireless_get_cloned_mac_address ((NMSettingWireless *) new));
g_object_get (new, NM_SETTING_WIRELESS_CLONED_MAC_ADDRESS, &str1, NULL);
g_assert_cmpstr ("11:22:33:44:55:66", ==, str1);
nm_clear_g_free (&str1);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
success = nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_EXACT);
g_assert (!success);
g_clear_object (&new);
new = nm_setting_duplicate (old);
g_object_set (new, NM_SETTING_WIRELESS_CLONED_MAC_ADDRESS, "stable-bia", NULL);
g_assert_cmpstr ("stable-bia", ==, nm_setting_wireless_get_cloned_mac_address ((NMSettingWireless *) new));
g_object_get (new, NM_SETTING_WIRELESS_CLONED_MAC_ADDRESS, &str1, NULL);
g_assert_cmpstr ("stable-bia", ==, str1);
2016-09-28 15:34:52 +02:00
nm_clear_g_free (&str1);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
success = nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_EXACT);
g_assert (!success);
g_clear_object (&new);
}
static void
test_setting_compare_timestamp (void)
{
gs_unref_object NMSetting *old = NULL, *new = NULL;
gboolean success;
old = nm_setting_connection_new ();
g_object_set (old,
NM_SETTING_CONNECTION_ID, "ignore timestamp connection",
NM_SETTING_CONNECTION_UUID, "b047a198-0e0a-4f0e-a653-eea09bb35e40",
NM_SETTING_CONNECTION_AUTOCONNECT, FALSE,
NM_SETTING_CONNECTION_TIMESTAMP, (guint64) 1234567890,
NULL);
new = nm_setting_duplicate (old);
g_object_set (new, NM_SETTING_CONNECTION_TIMESTAMP, (guint64) 1416316539, NULL);
/* First make sure they are different */
success = nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_EXACT);
g_assert (success == FALSE);
success = nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_IGNORE_TIMESTAMP);
g_assert (success);
}
typedef struct {
NMSettingSecretFlags secret_flags;
NMSettingCompareFlags comp_flags;
gboolean remove_secret;
} TestDataCompareSecrets;
static TestDataCompareSecrets *
test_data_compare_secrets_new (NMSettingSecretFlags secret_flags,
NMSettingCompareFlags comp_flags,
gboolean remove_secret)
{
TestDataCompareSecrets *data = g_new0 (TestDataCompareSecrets, 1);
data->secret_flags = secret_flags;
data->comp_flags = comp_flags;
data->remove_secret = remove_secret;
return data;
}
static void
_test_compare_secrets_check_diff (NMSetting *a,
NMSetting *b,
NMSettingCompareFlags flags,
gboolean exp_same_psk,
gboolean exp_same_psk_flags)
{
gs_unref_hashtable GHashTable *h = NULL;
NMSettingDiffResult _RESULT_IN_A = NM_SETTING_DIFF_RESULT_IN_A;
NMSettingDiffResult _RESULT_IN_B = NM_SETTING_DIFF_RESULT_IN_B;
gboolean invert_results;
gboolean diff_result;
NMSettingSecretFlags a_psk_flags = nm_setting_wireless_security_get_psk_flags (NM_SETTING_WIRELESS_SECURITY (a));
NMSettingSecretFlags b_psk_flags = nm_setting_wireless_security_get_psk_flags (NM_SETTING_WIRELESS_SECURITY (b));
const char *a_psk = nm_setting_wireless_security_get_psk (NM_SETTING_WIRELESS_SECURITY (a));
const char *b_psk = nm_setting_wireless_security_get_psk (NM_SETTING_WIRELESS_SECURITY (b));
g_assert (NM_IS_SETTING_WIRELESS_SECURITY (a));
g_assert (NM_IS_SETTING_WIRELESS_SECURITY (b));
invert_results = nmtst_get_rand_bool ();
if (invert_results) {
_RESULT_IN_A = NM_SETTING_DIFF_RESULT_IN_B;
_RESULT_IN_B = NM_SETTING_DIFF_RESULT_IN_A;
}
diff_result = nm_setting_diff (a, b, flags, invert_results, &h);
g_assert (exp_same_psk_flags == (a_psk_flags == b_psk_flags));
if (nm_streq0 (a_psk, b_psk))
g_assert (exp_same_psk);
else {
if (flags == NM_SETTING_COMPARE_FLAG_EXACT)
g_assert (!exp_same_psk);
else if (flags == NM_SETTING_COMPARE_FLAG_IGNORE_AGENT_OWNED_SECRETS) {
if ( !NM_FLAGS_HAS (a_psk_flags, NM_SETTING_SECRET_FLAG_AGENT_OWNED)
&& !NM_FLAGS_HAS (b_psk_flags, NM_SETTING_SECRET_FLAG_AGENT_OWNED))
g_assert (!exp_same_psk);
else if ( !NM_FLAGS_HAS (a_psk_flags, NM_SETTING_SECRET_FLAG_AGENT_OWNED)
&& NM_FLAGS_HAS (b_psk_flags, NM_SETTING_SECRET_FLAG_AGENT_OWNED))
g_assert (!exp_same_psk);
else
g_assert (exp_same_psk);
} else if (flags == NM_SETTING_COMPARE_FLAG_IGNORE_NOT_SAVED_SECRETS) {
if ( !NM_FLAGS_HAS (a_psk_flags, NM_SETTING_SECRET_FLAG_NOT_SAVED)
&& !NM_FLAGS_HAS (b_psk_flags, NM_SETTING_SECRET_FLAG_NOT_SAVED))
g_assert (!exp_same_psk);
else if ( !NM_FLAGS_HAS (a_psk_flags, NM_SETTING_SECRET_FLAG_NOT_SAVED)
&& NM_FLAGS_HAS (b_psk_flags, NM_SETTING_SECRET_FLAG_NOT_SAVED))
g_assert (!exp_same_psk);
else
g_assert (exp_same_psk);
} else if (flags == NM_SETTING_COMPARE_FLAG_IGNORE_SECRETS)
g_assert (exp_same_psk);
else
g_assert_not_reached ();
}
g_assert (diff_result == (exp_same_psk && exp_same_psk_flags));
g_assert (diff_result == (!h));
if (!diff_result) {
if (flags == NM_SETTING_COMPARE_FLAG_EXACT)
g_assert (!exp_same_psk);
else if ( NM_IN_SET (flags, NM_SETTING_COMPARE_FLAG_IGNORE_AGENT_OWNED_SECRETS,
NM_SETTING_COMPARE_FLAG_IGNORE_NOT_SAVED_SECRETS)
&& (a_psk_flags != b_psk_flags)
&& nm_setting_wireless_security_get_psk_flags (NM_SETTING_WIRELESS_SECURITY (a)) == NM_SETTING_SECRET_FLAG_NONE)
g_assert (!exp_same_psk);
else
g_assert (exp_same_psk);
g_assert ((!exp_same_psk) == g_hash_table_contains (h, NM_SETTING_WIRELESS_SECURITY_PSK));
if (!exp_same_psk) {
if (nm_setting_wireless_security_get_psk (NM_SETTING_WIRELESS_SECURITY (a)))
g_assert_cmpint (GPOINTER_TO_UINT (g_hash_table_lookup (h, NM_SETTING_WIRELESS_SECURITY_PSK)), ==, _RESULT_IN_A);
else
g_assert_cmpint (GPOINTER_TO_UINT (g_hash_table_lookup (h, NM_SETTING_WIRELESS_SECURITY_PSK)), ==, _RESULT_IN_B);
}
g_assert ((!exp_same_psk_flags) == g_hash_table_contains (h, NM_SETTING_WIRELESS_SECURITY_PSK_FLAGS));
if (!exp_same_psk_flags) {
if (nm_setting_wireless_security_get_psk_flags (NM_SETTING_WIRELESS_SECURITY (a)) != NM_SETTING_SECRET_FLAG_NONE)
g_assert_cmpint (GPOINTER_TO_UINT (g_hash_table_lookup (h, NM_SETTING_WIRELESS_SECURITY_PSK_FLAGS)), ==, _RESULT_IN_A);
else
g_assert_cmpint (GPOINTER_TO_UINT (g_hash_table_lookup (h, NM_SETTING_WIRELESS_SECURITY_PSK_FLAGS)), ==, _RESULT_IN_B);
}
g_assert_cmpint (g_hash_table_size (h), ==, (!exp_same_psk) + (!exp_same_psk_flags));
}
g_assert (diff_result == nm_setting_compare (a, b, flags));
g_assert (diff_result == nm_setting_compare (b, a, flags));
}
static void
test_setting_compare_secrets (gconstpointer test_data)
{
const TestDataCompareSecrets *data = test_data;
gs_unref_object NMConnection *conn_old = NULL;
gs_unref_object NMConnection *conn_new = NULL;
gs_unref_object NMSetting *old = NULL;
gs_unref_object NMSetting *new = NULL;
/* Make sure that a connection with transient/unsaved secrets compares
* successfully to the same connection without those secrets.
*/
old = nm_setting_wireless_security_new ();
g_object_set (old,
NM_SETTING_WIRELESS_SECURITY_KEY_MGMT, "wpa-psk",
NM_SETTING_WIRELESS_SECURITY_PSK, "really cool psk",
NULL);
nm_setting_set_secret_flags (old, NM_SETTING_WIRELESS_SECURITY_PSK, data->secret_flags, NULL);
new = nm_setting_duplicate (old);
if (data->remove_secret)
g_object_set (new, NM_SETTING_WIRELESS_SECURITY_PSK, NULL, NULL);
g_assert ((!data->remove_secret) == nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_EXACT));
g_assert ((!data->remove_secret) == nm_setting_compare (new, old, NM_SETTING_COMPARE_FLAG_EXACT));
_test_compare_secrets_check_diff (old, new, NM_SETTING_COMPARE_FLAG_EXACT, !data->remove_secret, TRUE);
_test_compare_secrets_check_diff (new, old, NM_SETTING_COMPARE_FLAG_EXACT, !data->remove_secret, TRUE);
g_assert (nm_setting_compare (old, new, data->comp_flags));
g_assert (nm_setting_compare (new, old, data->comp_flags));
_test_compare_secrets_check_diff (old, new, data->comp_flags, TRUE, TRUE);
_test_compare_secrets_check_diff (new, old, data->comp_flags, TRUE, TRUE);
/* OK. Try again, but this time not only change the secret, also let the secret flags differ... */
if (data->secret_flags != NM_SETTING_SECRET_FLAG_NONE) {
nm_setting_set_secret_flags (new, NM_SETTING_WIRELESS_SECURITY_PSK, NM_SETTING_SECRET_FLAG_NONE, NULL);
_test_compare_secrets_check_diff (old, new, NM_SETTING_COMPARE_FLAG_EXACT, FALSE, FALSE);
_test_compare_secrets_check_diff (new, old, NM_SETTING_COMPARE_FLAG_EXACT, FALSE, FALSE);
_test_compare_secrets_check_diff (old, new, data->comp_flags, TRUE, FALSE);
_test_compare_secrets_check_diff (new, old, data->comp_flags, FALSE, FALSE);
nm_setting_set_secret_flags (new, NM_SETTING_WIRELESS_SECURITY_PSK, data->secret_flags, NULL);
}
conn_old = nmtst_create_minimal_connection ("test-compare-secrets", NULL, NM_SETTING_WIRELESS_SETTING_NAME, NULL);
nm_connection_add_setting (conn_old, nm_setting_duplicate (old));
conn_new = nm_simple_connection_new_clone (conn_old);
nm_connection_add_setting (conn_new, nm_setting_duplicate (new));
g_assert ((!data->remove_secret) == nm_connection_compare (conn_old, conn_new, NM_SETTING_COMPARE_FLAG_EXACT));
g_assert ((!data->remove_secret) == nm_connection_compare (conn_new, conn_old, NM_SETTING_COMPARE_FLAG_EXACT));
g_assert (nm_connection_compare (conn_old, conn_new, data->comp_flags));
g_assert (nm_connection_compare (conn_new, conn_old, data->comp_flags));
}
static void
test_setting_compare_vpn_secrets (gconstpointer test_data)
{
const TestDataCompareSecrets *data = test_data;
gs_unref_object NMSetting *old = NULL, *new = NULL;
gboolean success;
/* Make sure that a connection with transient/unsaved secrets compares
* successfully to the same connection without those secrets.
*/
old = nm_setting_vpn_new ();
nm_setting_vpn_add_secret (NM_SETTING_VPN (old), "foobarbaz", "really secret password");
nm_setting_vpn_add_secret (NM_SETTING_VPN (old), "asdfasdfasdf", "really adfasdfasdfasdf");
nm_setting_vpn_add_secret (NM_SETTING_VPN (old), "0123456778", "abcdefghijklmnpqrstuvqxyz");
nm_setting_vpn_add_secret (NM_SETTING_VPN (old), "borkbork", "yet another really secret password");
nm_setting_set_secret_flags (old, "borkbork", data->secret_flags, NULL);
/* Clear "borkbork" from the duplicated setting */
new = nm_setting_duplicate (old);
if (data->remove_secret) {
nm_setting_vpn_remove_secret (NM_SETTING_VPN (new), "borkbork");
/* First make sure they are different */
success = nm_setting_compare (old, new, NM_SETTING_COMPARE_FLAG_EXACT);
g_assert (success == FALSE);
}
success = nm_setting_compare (old, new, data->comp_flags);
g_assert (success);
}
static void
test_hwaddr_aton_ether_normal (void)
{
guint8 buf[100];
guint8 expected[ETH_ALEN] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55 };
g_assert (nm_utils_hwaddr_aton ("00:11:22:33:44:55", buf, ETH_ALEN) != NULL);
g_assert (memcmp (buf, expected, sizeof (expected)) == 0);
}
static void
test_hwaddr_aton_ib_normal (void)
{
guint8 buf[100];
const char *source = "00:11:22:33:44:55:66:77:88:99:01:12:23:34:45:56:67:78:89:90";
guint8 expected[INFINIBAND_ALEN] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
0x77, 0x88, 0x99, 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, 0x89,
0x90 };
g_assert (nm_utils_hwaddr_aton (source, buf, INFINIBAND_ALEN) != NULL);
g_assert (memcmp (buf, expected, sizeof (expected)) == 0);
}
static void
test_hwaddr_aton_no_leading_zeros (void)
{
guint8 buf[100];
guint8 expected[ETH_ALEN] = { 0x00, 0x1A, 0x2B, 0x03, 0x44, 0x05 };
g_assert (nm_utils_hwaddr_aton ("0:1a:2B:3:44:5", buf, ETH_ALEN) != NULL);
g_assert (memcmp (buf, expected, sizeof (expected)) == 0);
}
static void
test_hwaddr_aton_malformed (void)
{
guint8 buf[100];
g_assert (nm_utils_hwaddr_aton ("0:1a:2B:3:a@%%", buf, ETH_ALEN) == NULL);
}
static void
test_hwaddr_equal (void)
{
const char *string = "00:1a:2b:03:44:05";
const char *upper_string = "00:1A:2B:03:44:05";
const char *bad_string = "0:1a:2b:3:44:5";
const guint8 binary[ETH_ALEN] = { 0x00, 0x1A, 0x2B, 0x03, 0x44, 0x05 };
const char *other_string = "1a:2b:03:44:05:00";
const guint8 other_binary[ETH_ALEN] = { 0x1A, 0x2B, 0x03, 0x44, 0x05, 0x00 };
const char *long_string = "00:1a:2b:03:44:05:06:07";
const guint8 long_binary[8] = { 0x00, 0x1A, 0x2B, 0x03, 0x44, 0x05, 0x06, 0x07 };
const char *null_string = "00:00:00:00:00:00";
const guint8 null_binary[ETH_ALEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
g_assert (nm_utils_hwaddr_matches (string, -1, string, -1));
g_assert (nm_utils_hwaddr_matches (string, -1, upper_string, -1));
g_assert (nm_utils_hwaddr_matches (string, -1, bad_string, -1));
g_assert (nm_utils_hwaddr_matches (string, -1, binary, sizeof (binary)));
g_assert (!nm_utils_hwaddr_matches (string, -1, other_string, -1));
g_assert (!nm_utils_hwaddr_matches (string, -1, other_binary, sizeof (other_binary)));
g_assert (!nm_utils_hwaddr_matches (string, -1, long_string, -1));
g_assert (!nm_utils_hwaddr_matches (string, -1, long_binary, sizeof (long_binary)));
g_assert (!nm_utils_hwaddr_matches (string, -1, null_string, -1));
g_assert (!nm_utils_hwaddr_matches (string, -1, null_binary, sizeof (null_binary)));
g_assert (!nm_utils_hwaddr_matches (string, -1, NULL, ETH_ALEN));
g_assert (nm_utils_hwaddr_matches (binary, sizeof (binary), string, -1));
g_assert (nm_utils_hwaddr_matches (binary, sizeof (binary), upper_string, -1));
g_assert (nm_utils_hwaddr_matches (binary, sizeof (binary), bad_string, -1));
g_assert (nm_utils_hwaddr_matches (binary, sizeof (binary), binary, sizeof (binary)));
g_assert (!nm_utils_hwaddr_matches (binary, sizeof (binary), other_string, -1));
g_assert (!nm_utils_hwaddr_matches (binary, sizeof (binary), other_binary, sizeof (other_binary)));
g_assert (!nm_utils_hwaddr_matches (binary, sizeof (binary), long_string, -1));
g_assert (!nm_utils_hwaddr_matches (binary, sizeof (binary), long_binary, sizeof (long_binary)));
g_assert (!nm_utils_hwaddr_matches (binary, sizeof (binary), null_string, -1));
g_assert (!nm_utils_hwaddr_matches (binary, sizeof (binary), null_binary, sizeof (null_binary)));
g_assert (!nm_utils_hwaddr_matches (binary, sizeof (binary), NULL, ETH_ALEN));
g_assert (!nm_utils_hwaddr_matches (null_string, -1, string, -1));
g_assert (!nm_utils_hwaddr_matches (null_string, -1, upper_string, -1));
g_assert (!nm_utils_hwaddr_matches (null_string, -1, bad_string, -1));
g_assert (!nm_utils_hwaddr_matches (null_string, -1, binary, sizeof (binary)));
g_assert (!nm_utils_hwaddr_matches (null_string, -1, other_string, -1));
g_assert (!nm_utils_hwaddr_matches (null_string, -1, other_binary, sizeof (other_binary)));
g_assert (!nm_utils_hwaddr_matches (null_string, -1, long_string, -1));
g_assert (!nm_utils_hwaddr_matches (null_string, -1, long_binary, sizeof (long_binary)));
g_assert (nm_utils_hwaddr_matches (null_string, -1, null_string, -1));
g_assert (nm_utils_hwaddr_matches (null_string, -1, null_binary, sizeof (null_binary)));
g_assert (nm_utils_hwaddr_matches (null_string, -1, NULL, ETH_ALEN));
g_assert (!nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), string, -1));
g_assert (!nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), upper_string, -1));
g_assert (!nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), bad_string, -1));
g_assert (!nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), binary, sizeof (binary)));
g_assert (!nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), other_string, -1));
g_assert (!nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), other_binary, sizeof (other_binary)));
g_assert (!nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), long_string, -1));
g_assert (!nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), long_binary, sizeof (long_binary)));
g_assert (nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), null_string, -1));
g_assert (nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), null_binary, sizeof (null_binary)));
g_assert (nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), NULL, ETH_ALEN));
g_assert (!nm_utils_hwaddr_matches (NULL, -1, NULL, -1));
g_assert (!nm_utils_hwaddr_matches (NULL, -1, string, -1));
g_assert (!nm_utils_hwaddr_matches (string, -1, NULL, -1));
g_assert (!nm_utils_hwaddr_matches (NULL, -1, null_string, -1));
g_assert (!nm_utils_hwaddr_matches (null_string, -1, NULL, -1));
g_assert (!nm_utils_hwaddr_matches (NULL, -1, binary, sizeof (binary)));
g_assert (!nm_utils_hwaddr_matches (binary, sizeof (binary), NULL, -1));
g_assert (!nm_utils_hwaddr_matches (NULL, -1, null_binary, sizeof (null_binary)));
g_assert (!nm_utils_hwaddr_matches (null_binary, sizeof (null_binary), NULL, -1));
}
static void
test_hwaddr_canonical (void)
{
const char *string = "00:1A:2B:03:44:05";
const char *lower_string = "00:1a:2b:03:44:05";
const char *short_string = "0:1a:2b:3:44:5";
const char *hyphen_string = "00-1a-2b-03-44-05";
const char *invalid_string = "00:1A:2B";
char *canonical;
canonical = nm_utils_hwaddr_canonical (string, ETH_ALEN);
g_assert_cmpstr (canonical, ==, string);
g_free (canonical);
canonical = nm_utils_hwaddr_canonical (lower_string, ETH_ALEN);
g_assert_cmpstr (canonical, ==, string);
g_free (canonical);
canonical = nm_utils_hwaddr_canonical (short_string, ETH_ALEN);
g_assert_cmpstr (canonical, ==, string);
g_free (canonical);
canonical = nm_utils_hwaddr_canonical (hyphen_string, ETH_ALEN);
g_assert_cmpstr (canonical, ==, string);
g_free (canonical);
canonical = nm_utils_hwaddr_canonical (invalid_string, ETH_ALEN);
g_assert_cmpstr (canonical, ==, NULL);
canonical = nm_utils_hwaddr_canonical (invalid_string, -1);
g_assert_cmpstr (canonical, ==, invalid_string);
g_free (canonical);
}
static void
test_connection_changed_cb (NMConnection *connection, gboolean *data)
{
*data = TRUE;
}
static guint32
_netmask_to_prefix (guint32 netmask)
{
guint32 prefix;
guint8 v;
const guint8 *p = (guint8 *) &netmask;
if (p[3]) {
prefix = 24;
v = p[3];
} else if (p[2]) {
prefix = 16;
v = p[2];
} else if (p[1]) {
prefix = 8;
v = p[1];
} else {
prefix = 0;
v = p[0];
}
while (v) {
prefix++;
v <<= 1;
}
g_assert_cmpint (prefix, <=, 32);
/* we re-implemented the netmask-to-prefix code differently. Check
* that they agree. */
g_assert_cmpint (prefix, ==, nm_utils_ip4_netmask_to_prefix (netmask));
return prefix;
}
static void
test_ip4_prefix_to_netmask (void)
{
int i;
for (i = 0; i<=32; i++) {
guint32 netmask = _nm_utils_ip4_prefix_to_netmask (i);
int plen = _netmask_to_prefix (netmask);
g_assert_cmpint (i, ==, plen);
{
guint32 msk = 0x80000000;
guint32 netmask2 = 0;
guint32 prefix = i;
while (prefix > 0) {
netmask2 |= msk;
msk >>= 1;
prefix--;
}
g_assert_cmpint (netmask, ==, (guint32) htonl (netmask2));
}
}
}
static void
test_ip4_netmask_to_prefix (void)
{
int i, j;
GRand *rand = g_rand_new ();
g_rand_set_seed (rand, 1);
for (i = 2; i<=32; i++) {
guint32 netmask = _nm_utils_ip4_prefix_to_netmask (i);
guint32 netmask_lowest_bit = netmask & ~_nm_utils_ip4_prefix_to_netmask (i-1);
g_assert_cmpint (i, ==, _netmask_to_prefix (netmask));
for (j = 0; j < 2*i; j++) {
guint32 r = g_rand_int (rand);
guint32 netmask_holey;
guint32 prefix_holey;
netmask_holey = (netmask & r) | netmask_lowest_bit;
if (netmask_holey == netmask)
continue;
/* create an invalid netmask with holes and check that the function
* returns the longest prefix. */
prefix_holey = _netmask_to_prefix (netmask_holey);
g_assert_cmpint (i, ==, prefix_holey);
}
}
g_rand_free (rand);
}
#define ASSERT_CHANGED(statement) \
G_STMT_START { \
changed = FALSE; \
statement; \
g_assert (changed); \
} G_STMT_END
#define ASSERT_UNCHANGED(statement) \
G_STMT_START { \
changed = FALSE; \
statement; \
g_assert (!changed); \
} G_STMT_END
static void
test_connection_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
connection = new_test_connection ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
/* Add new setting */
ASSERT_CHANGED (nm_connection_add_setting (connection, nm_setting_vlan_new ()));
/* Remove existing setting */
ASSERT_CHANGED (nm_connection_remove_setting (connection, NM_TYPE_SETTING_VLAN));
/* Remove non-existing setting */
ASSERT_UNCHANGED (nm_connection_remove_setting (connection, NM_TYPE_SETTING_VLAN));
g_object_unref (connection);
}
static void
test_setting_connection_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSettingConnection *s_con;
gs_free char *uuid = NULL;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_con = (NMSettingConnection *) nm_setting_connection_new ();
nm_connection_add_setting (connection, NM_SETTING (s_con));
ASSERT_CHANGED (g_object_set (s_con, NM_SETTING_CONNECTION_ID, "adfadfasdfaf", NULL));
ASSERT_CHANGED (nm_setting_connection_add_permission (s_con, "user", "billsmith", NULL));
ASSERT_CHANGED (nm_setting_connection_remove_permission (s_con, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (iter != NULL));
ASSERT_UNCHANGED (nm_setting_connection_remove_permission (s_con, 1));
g_test_assert_expected_messages ();
uuid = nm_utils_uuid_generate ();
ASSERT_CHANGED (nm_setting_connection_add_secondary (s_con, uuid));
ASSERT_CHANGED (nm_setting_connection_remove_secondary (s_con, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (elt != NULL));
ASSERT_UNCHANGED (nm_setting_connection_remove_secondary (s_con, 1));
g_test_assert_expected_messages ();
g_object_unref (connection);
}
static void
test_setting_bond_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSettingBond *s_bond;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_bond = (NMSettingBond *) nm_setting_bond_new ();
nm_connection_add_setting (connection, NM_SETTING (s_bond));
ASSERT_CHANGED (nm_setting_bond_add_option (s_bond, NM_SETTING_BOND_OPTION_DOWNDELAY, "10"));
ASSERT_CHANGED (nm_setting_bond_remove_option (s_bond, NM_SETTING_BOND_OPTION_DOWNDELAY));
ASSERT_UNCHANGED (nm_setting_bond_remove_option (s_bond, NM_SETTING_BOND_OPTION_UPDELAY));
g_object_unref (connection);
}
static void
test_setting_ip4_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSettingIPConfig *s_ip4;
NMIPAddress *addr;
NMIPRoute *route;
GError *error = NULL;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_ip4 = (NMSettingIPConfig *) nm_setting_ip4_config_new ();
nm_connection_add_setting (connection, NM_SETTING (s_ip4));
ASSERT_CHANGED (nm_setting_ip_config_add_dns (s_ip4, "11.22.0.0"));
ASSERT_CHANGED (nm_setting_ip_config_remove_dns (s_ip4, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx >= 0 && idx < priv->dns->len));
ASSERT_UNCHANGED (nm_setting_ip_config_remove_dns (s_ip4, 1));
g_test_assert_expected_messages ();
nm_setting_ip_config_add_dns (s_ip4, "33.44.0.0");
ASSERT_CHANGED (nm_setting_ip_config_clear_dns (s_ip4));
ASSERT_CHANGED (nm_setting_ip_config_add_dns_search (s_ip4, "foobar.com"));
ASSERT_CHANGED (nm_setting_ip_config_remove_dns_search (s_ip4, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx >= 0 && idx < priv->dns_search->len));
ASSERT_UNCHANGED (nm_setting_ip_config_remove_dns_search (s_ip4, 1));
g_test_assert_expected_messages ();
ASSERT_CHANGED (nm_setting_ip_config_add_dns_search (s_ip4, "foobar.com"));
ASSERT_CHANGED (nm_setting_ip_config_clear_dns_searches (s_ip4));
addr = nm_ip_address_new (AF_INET, "22.33.0.0", 24, &error);
g_assert_no_error (error);
ASSERT_CHANGED (nm_setting_ip_config_add_address (s_ip4, addr));
ASSERT_CHANGED (nm_setting_ip_config_remove_address (s_ip4, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx >= 0 && idx < priv->addresses->len));
ASSERT_UNCHANGED (nm_setting_ip_config_remove_address (s_ip4, 1));
g_test_assert_expected_messages ();
nm_setting_ip_config_add_address (s_ip4, addr);
ASSERT_CHANGED (nm_setting_ip_config_clear_addresses (s_ip4));
route = nm_ip_route_new (AF_INET, "22.33.0.0", 24, NULL, 0, &error);
g_assert_no_error (error);
ASSERT_CHANGED (nm_setting_ip_config_add_route (s_ip4, route));
ASSERT_CHANGED (nm_setting_ip_config_remove_route (s_ip4, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx >= 0 && idx < priv->routes->len));
ASSERT_UNCHANGED (nm_setting_ip_config_remove_route (s_ip4, 1));
g_test_assert_expected_messages ();
nm_setting_ip_config_add_route (s_ip4, route);
ASSERT_CHANGED (nm_setting_ip_config_clear_routes (s_ip4));
ASSERT_CHANGED (nm_setting_ip_config_add_dns_option (s_ip4, "debug"));
ASSERT_CHANGED (nm_setting_ip_config_remove_dns_option (s_ip4, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx >= 0 && idx < priv->dns_options->len));
ASSERT_UNCHANGED (nm_setting_ip_config_remove_dns_option (s_ip4, 1));
g_test_assert_expected_messages ();
nm_ip_address_unref (addr);
nm_ip_route_unref (route);
g_object_unref (connection);
}
static void
test_setting_ip6_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSettingIPConfig *s_ip6;
NMIPAddress *addr;
NMIPRoute *route;
GError *error = NULL;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_ip6 = (NMSettingIPConfig *) nm_setting_ip6_config_new ();
nm_connection_add_setting (connection, NM_SETTING (s_ip6));
ASSERT_CHANGED (nm_setting_ip_config_add_dns (s_ip6, "1:2:3::4:5:6"));
ASSERT_CHANGED (nm_setting_ip_config_remove_dns (s_ip6, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx >= 0 && idx < priv->dns->len));
ASSERT_UNCHANGED (nm_setting_ip_config_remove_dns (s_ip6, 1));
g_test_assert_expected_messages ();
nm_setting_ip_config_add_dns (s_ip6, "1:2:3::4:5:6");
ASSERT_CHANGED (nm_setting_ip_config_clear_dns (s_ip6));
ASSERT_CHANGED (nm_setting_ip_config_add_dns_search (s_ip6, "foobar.com"));
ASSERT_CHANGED (nm_setting_ip_config_remove_dns_search (s_ip6, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx >= 0 && idx < priv->dns_search->len));
ASSERT_UNCHANGED (nm_setting_ip_config_remove_dns_search (s_ip6, 1));
g_test_assert_expected_messages ();
nm_setting_ip_config_add_dns_search (s_ip6, "foobar.com");
ASSERT_CHANGED (nm_setting_ip_config_clear_dns_searches (s_ip6));
addr = nm_ip_address_new (AF_INET6, "1:2:3::4:5:6", 64, &error);
g_assert_no_error (error);
ASSERT_CHANGED (nm_setting_ip_config_add_address (s_ip6, addr));
ASSERT_CHANGED (nm_setting_ip_config_remove_address (s_ip6, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx >= 0 && idx < priv->addresses->len));
ASSERT_UNCHANGED (nm_setting_ip_config_remove_address (s_ip6, 1));
g_test_assert_expected_messages ();
nm_setting_ip_config_add_address (s_ip6, addr);
ASSERT_CHANGED (nm_setting_ip_config_clear_addresses (s_ip6));
route = nm_ip_route_new (AF_INET6, "1:2:3::4:5:6", 128, NULL, 0, &error);
g_assert_no_error (error);
ASSERT_CHANGED (nm_setting_ip_config_add_route (s_ip6, route));
ASSERT_CHANGED (nm_setting_ip_config_remove_route (s_ip6, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx >= 0 && idx < priv->routes->len));
ASSERT_UNCHANGED (nm_setting_ip_config_remove_route (s_ip6, 1));
g_test_assert_expected_messages ();
nm_setting_ip_config_add_route (s_ip6, route);
ASSERT_CHANGED (nm_setting_ip_config_clear_routes (s_ip6));
nm_ip_address_unref (addr);
nm_ip_route_unref (route);
g_object_unref (connection);
}
static void
test_setting_vlan_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSettingVlan *s_vlan;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_vlan = (NMSettingVlan *) nm_setting_vlan_new ();
nm_connection_add_setting (connection, NM_SETTING (s_vlan));
ASSERT_CHANGED (nm_setting_vlan_add_priority (s_vlan, NM_VLAN_INGRESS_MAP, 1, 3));
ASSERT_CHANGED (nm_setting_vlan_remove_priority (s_vlan, NM_VLAN_INGRESS_MAP, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx < g_slist_length (list)));
ASSERT_UNCHANGED (nm_setting_vlan_remove_priority (s_vlan, NM_VLAN_INGRESS_MAP, 1));
g_test_assert_expected_messages ();
ASSERT_CHANGED (nm_setting_vlan_add_priority_str (s_vlan, NM_VLAN_INGRESS_MAP, "1:3"));
ASSERT_CHANGED (nm_setting_vlan_clear_priorities (s_vlan, NM_VLAN_INGRESS_MAP));
ASSERT_CHANGED (nm_setting_vlan_add_priority (s_vlan, NM_VLAN_EGRESS_MAP, 1, 3));
ASSERT_CHANGED (nm_setting_vlan_remove_priority (s_vlan, NM_VLAN_EGRESS_MAP, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (idx < g_slist_length (list)));
ASSERT_UNCHANGED (nm_setting_vlan_remove_priority (s_vlan, NM_VLAN_EGRESS_MAP, 1));
g_test_assert_expected_messages ();
ASSERT_CHANGED (nm_setting_vlan_add_priority_str (s_vlan, NM_VLAN_EGRESS_MAP, "1:3"));
ASSERT_CHANGED (nm_setting_vlan_clear_priorities (s_vlan, NM_VLAN_EGRESS_MAP));
g_object_unref (connection);
}
static void
test_setting_vpn_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSettingVpn *s_vpn;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_vpn = (NMSettingVpn *) nm_setting_vpn_new ();
nm_connection_add_setting (connection, NM_SETTING (s_vpn));
ASSERT_CHANGED (nm_setting_vpn_add_data_item (s_vpn, "foobar", "baz"));
ASSERT_CHANGED (nm_setting_vpn_remove_data_item (s_vpn, "foobar"));
ASSERT_UNCHANGED (nm_setting_vpn_remove_data_item (s_vpn, "not added"));
ASSERT_CHANGED (nm_setting_vpn_add_secret (s_vpn, "foobar", "baz"));
ASSERT_CHANGED (nm_setting_vpn_remove_secret (s_vpn, "foobar"));
ASSERT_UNCHANGED (nm_setting_vpn_remove_secret (s_vpn, "not added"));
g_object_unref (connection);
}
static void
test_setting_wired_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSettingWired *s_wired;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_wired = (NMSettingWired *) nm_setting_wired_new ();
nm_connection_add_setting (connection, NM_SETTING (s_wired));
ASSERT_CHANGED (nm_setting_wired_add_s390_option (s_wired, "portno", "1"));
ASSERT_CHANGED (nm_setting_wired_remove_s390_option (s_wired, "portno"));
ASSERT_UNCHANGED (nm_setting_wired_remove_s390_option (s_wired, "layer2"));
g_object_unref (connection);
}
static void
test_setting_wireless_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSettingWireless *s_wifi;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_wifi = (NMSettingWireless *) nm_setting_wireless_new ();
nm_connection_add_setting (connection, NM_SETTING (s_wifi));
ASSERT_CHANGED (nm_setting_wireless_add_seen_bssid (s_wifi, "00:11:22:33:44:55"));
g_object_unref (connection);
}
static void
test_setting_wireless_security_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSettingWirelessSecurity *s_wsec;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_wsec = (NMSettingWirelessSecurity *) nm_setting_wireless_security_new ();
nm_connection_add_setting (connection, NM_SETTING (s_wsec));
/* Protos */
ASSERT_CHANGED (nm_setting_wireless_security_add_proto (s_wsec, "wpa"));
ASSERT_CHANGED (nm_setting_wireless_security_remove_proto (s_wsec, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (elt != NULL));
ASSERT_UNCHANGED (nm_setting_wireless_security_remove_proto (s_wsec, 1));
g_test_assert_expected_messages ();
nm_setting_wireless_security_add_proto (s_wsec, "wep");
ASSERT_CHANGED (nm_setting_wireless_security_clear_protos (s_wsec));
/* Pairwise ciphers */
ASSERT_CHANGED (nm_setting_wireless_security_add_pairwise (s_wsec, "tkip"));
ASSERT_CHANGED (nm_setting_wireless_security_remove_pairwise (s_wsec, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (elt != NULL));
ASSERT_UNCHANGED (nm_setting_wireless_security_remove_pairwise (s_wsec, 1));
g_test_assert_expected_messages ();
nm_setting_wireless_security_add_pairwise (s_wsec, "tkip");
ASSERT_CHANGED (nm_setting_wireless_security_clear_pairwise (s_wsec));
/* Group ciphers */
ASSERT_CHANGED (nm_setting_wireless_security_add_group (s_wsec, "ccmp"));
ASSERT_CHANGED (nm_setting_wireless_security_remove_group (s_wsec, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (elt != NULL));
ASSERT_UNCHANGED (nm_setting_wireless_security_remove_group (s_wsec, 1));
g_test_assert_expected_messages ();
nm_setting_wireless_security_add_group (s_wsec, "tkip");
ASSERT_CHANGED (nm_setting_wireless_security_clear_groups (s_wsec));
/* WEP key secret flags */
ASSERT_CHANGED (g_assert (nm_setting_set_secret_flags (NM_SETTING (s_wsec), "wep-key0", NM_SETTING_SECRET_FLAG_AGENT_OWNED, NULL)));
ASSERT_CHANGED (g_assert (nm_setting_set_secret_flags (NM_SETTING (s_wsec), "wep-key1", NM_SETTING_SECRET_FLAG_AGENT_OWNED, NULL)));
ASSERT_CHANGED (g_assert (nm_setting_set_secret_flags (NM_SETTING (s_wsec), "wep-key2", NM_SETTING_SECRET_FLAG_AGENT_OWNED, NULL)));
ASSERT_CHANGED (g_assert (nm_setting_set_secret_flags (NM_SETTING (s_wsec), "wep-key3", NM_SETTING_SECRET_FLAG_AGENT_OWNED, NULL)));
g_object_unref (connection);
}
static void
test_setting_802_1x_changed_signal (void)
{
NMConnection *connection;
gboolean changed = FALSE;
NMSetting8021x *s_8021x;
connection = nm_simple_connection_new ();
g_signal_connect (connection,
NM_CONNECTION_CHANGED,
(GCallback) test_connection_changed_cb,
&changed);
s_8021x = (NMSetting8021x *) nm_setting_802_1x_new ();
nm_connection_add_setting (connection, NM_SETTING (s_8021x));
/* EAP methods */
ASSERT_CHANGED (nm_setting_802_1x_add_eap_method (s_8021x, "tls"));
ASSERT_CHANGED (nm_setting_802_1x_remove_eap_method (s_8021x, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (elt != NULL));
ASSERT_UNCHANGED (nm_setting_802_1x_remove_eap_method (s_8021x, 1));
g_test_assert_expected_messages ();
nm_setting_802_1x_add_eap_method (s_8021x, "ttls");
ASSERT_CHANGED (nm_setting_802_1x_clear_eap_methods (s_8021x));
/* alternate subject matches */
ASSERT_CHANGED (nm_setting_802_1x_add_altsubject_match (s_8021x, "EMAIL:server@example.com"));
ASSERT_CHANGED (nm_setting_802_1x_remove_altsubject_match (s_8021x, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (elt != NULL));
ASSERT_UNCHANGED (nm_setting_802_1x_remove_altsubject_match (s_8021x, 1));
g_test_assert_expected_messages ();
nm_setting_802_1x_add_altsubject_match (s_8021x, "EMAIL:server@example.com");
ASSERT_CHANGED (nm_setting_802_1x_clear_altsubject_matches (s_8021x));
/* phase2 alternate subject matches */
ASSERT_CHANGED (nm_setting_802_1x_add_phase2_altsubject_match (s_8021x, "EMAIL:server@example.com"));
ASSERT_CHANGED (nm_setting_802_1x_remove_phase2_altsubject_match (s_8021x, 0));
NMTST_EXPECT_LIBNM_CRITICAL (NMTST_G_RETURN_MSG (elt != NULL));
ASSERT_UNCHANGED (nm_setting_802_1x_remove_phase2_altsubject_match (s_8021x, 1));
g_test_assert_expected_messages ();
nm_setting_802_1x_add_phase2_altsubject_match (s_8021x, "EMAIL:server@example.com");
ASSERT_CHANGED (nm_setting_802_1x_clear_phase2_altsubject_matches (s_8021x));
g_object_unref (connection);
}
static void
test_setting_old_uuid (void)
{
gs_unref_object NMSetting *setting = NULL;
/* NetworkManager-0.9.4.0 generated 40-character UUIDs with no dashes,
* like this one. Test that we maintain compatibility. */
const char *uuid = "f43bec2cdd60e5da381ebb1eb1fa39f3cc52660c";
setting = nm_setting_connection_new ();
g_object_set (G_OBJECT (setting),
NM_SETTING_CONNECTION_ID, "uuidtest",
NM_SETTING_CONNECTION_UUID, uuid,
NM_SETTING_CONNECTION_TYPE, NM_SETTING_WIRED_SETTING_NAME,
NULL);
nmtst_assert_setting_verifies (NM_SETTING (setting));
}
/*****************************************************************************/
static void
test_connection_normalize_uuid (void)
{
gs_unref_object NMConnection *con = NULL;
con = nmtst_create_minimal_connection ("test1", NULL, NM_SETTING_WIRED_SETTING_NAME, NULL);
nmtst_assert_connection_verifies_and_normalizable (con);
g_object_set (nm_connection_get_setting_connection (con),
NM_SETTING_CONNECTION_UUID, NULL,
NULL);
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
}
/*****************************************************************************/
/*
* Test normalization of interface-name
*/
static void
test_connection_normalize_virtual_iface_name (void)
{
NMConnection *con = NULL;
NMSettingConnection *s_con;
NMSettingVlan *s_vlan;
GVariant *connection_dict, *setting_dict, *var;
GError *error = NULL;
const char *IFACE_NAME = "iface";
const char *IFACE_VIRT = "iface-X";
con = nmtst_create_minimal_connection ("test1",
"22001632-bbb4-4616-b277-363dce3dfb5b",
NM_SETTING_VLAN_SETTING_NAME,
&s_con);
nm_connection_add_setting (con,
g_object_new (NM_TYPE_SETTING_IP4_CONFIG,
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_AUTO,
NULL));
nm_connection_add_setting (con,
g_object_new (NM_TYPE_SETTING_IP6_CONFIG,
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_AUTO,
NULL));
s_vlan = nm_connection_get_setting_vlan (con);
g_object_set (G_OBJECT (s_vlan),
NM_SETTING_VLAN_PARENT, "eth0",
NULL);
g_object_set (G_OBJECT (s_con), NM_SETTING_CONNECTION_INTERFACE_NAME, IFACE_NAME, NULL);
g_assert_cmpstr (nm_connection_get_interface_name (con), ==, IFACE_NAME);
connection_dict = nm_connection_to_dbus (con, NM_CONNECTION_SERIALIZE_ALL);
g_object_unref (con);
/* Serialized form should include vlan.interface-name as well. */
setting_dict = g_variant_lookup_value (connection_dict, NM_SETTING_VLAN_SETTING_NAME, NM_VARIANT_TYPE_SETTING);
g_assert (setting_dict != NULL);
var = g_variant_lookup_value (setting_dict, "interface-name", NULL);
g_assert (var != NULL);
g_assert (g_variant_is_of_type (var, G_VARIANT_TYPE_STRING));
g_assert_cmpstr (g_variant_get_string (var, NULL), ==, IFACE_NAME);
g_variant_unref (setting_dict);
g_variant_unref (var);
/* If vlan.interface-name will be ignored. */
NMTST_VARIANT_EDITOR (connection_dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_VLAN_SETTING_NAME,
"interface-name",
"s",
":::this-is-not-a-valid-interface-name:::");
);
con = _connection_new_from_dbus (connection_dict, &error);
nmtst_assert_success (con, error);
g_assert_cmpstr (nm_connection_get_interface_name (con), ==, IFACE_NAME);
g_clear_object (&con);
/* If vlan.interface-name is valid, but doesn't match, it will be ignored. */
NMTST_VARIANT_EDITOR (connection_dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_VLAN_SETTING_NAME,
"interface-name",
"s",
IFACE_VIRT);
);
con = _connection_new_from_dbus (connection_dict, &error);
g_assert_no_error (error);
g_assert_cmpstr (nm_connection_get_interface_name (con), ==, IFACE_NAME);
s_con = nm_connection_get_setting_connection (con);
g_assert_cmpstr (nm_setting_connection_get_interface_name (s_con), ==, IFACE_NAME);
g_object_unref (con);
/* But removing connection.interface-name should result in vlan.connection-name
* being "promoted".
*/
NMTST_VARIANT_EDITOR (connection_dict,
NMTST_VARIANT_DROP_PROPERTY (NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_CONNECTION_INTERFACE_NAME);
);
con = _connection_new_from_dbus (connection_dict, &error);
g_assert_no_error (error);
g_assert_cmpstr (nm_connection_get_interface_name (con), ==, IFACE_VIRT);
s_con = nm_connection_get_setting_connection (con);
g_assert_cmpstr (nm_setting_connection_get_interface_name (s_con), ==, IFACE_VIRT);
g_object_unref (con);
g_variant_unref (connection_dict);
}
static void
_test_connection_normalize_type_normalizable_setting (const char *type,
void (*prepare_normalizable_fcn) (NMConnection *con))
{
NMSettingConnection *s_con;
NMSetting *s_base;
GType base_type;
gs_unref_object NMConnection *con = NULL;
gs_free char *id = g_strdup_printf ("%s[%s]", G_STRFUNC, type);
base_type = nm_setting_lookup_type (type);
g_assert (base_type != G_TYPE_INVALID);
g_assert (_nm_setting_type_get_base_type_priority (base_type) != NM_SETTING_PRIORITY_INVALID);
con = nmtst_create_minimal_connection (id, NULL, NULL, &s_con);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
g_object_set (s_con, NM_SETTING_CONNECTION_TYPE, type, NULL);
if (prepare_normalizable_fcn)
prepare_normalizable_fcn (con);
g_assert (!nm_connection_get_setting_by_name (con, type));
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_SETTING);
nmtst_connection_normalize (con);
s_base = nm_connection_get_setting_by_name (con, type);
g_assert (s_base);
g_assert (G_OBJECT_TYPE (s_base) == base_type);
}
static void
_test_connection_normalize_type_unnormalizable_setting (const char *type)
{
NMSettingConnection *s_con;
GType base_type;
gs_unref_object NMConnection *con = NULL;
gs_free char *id = g_strdup_printf ("%s[%s]", G_STRFUNC, type);
base_type = nm_setting_lookup_type (type);
g_assert (base_type != G_TYPE_INVALID);
g_assert (_nm_setting_type_get_base_type_priority (base_type) != NM_SETTING_PRIORITY_INVALID);
con = nmtst_create_minimal_connection (id, NULL, NULL, &s_con);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
g_object_set (s_con, NM_SETTING_CONNECTION_TYPE, type, NULL);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_SETTING);
}
static void
_test_connection_normalize_type_normalizable_type (const char *type,
NMSetting *(*add_setting_fcn) (NMConnection *con))
{
NMSettingConnection *s_con;
NMSetting *s_base;
GType base_type;
gs_unref_object NMConnection *con = NULL;
gs_free char *id = g_strdup_printf ("%s[%s]", G_STRFUNC, type);
base_type = nm_setting_lookup_type (type);
g_assert (base_type != G_TYPE_INVALID);
g_assert (_nm_setting_type_get_base_type_priority (base_type) != NM_SETTING_PRIORITY_INVALID);
con = nmtst_create_minimal_connection (id, NULL, NULL, &s_con);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
if (add_setting_fcn)
s_base = add_setting_fcn (con);
else {
s_base = NM_SETTING (g_object_new (base_type, NULL));
nm_connection_add_setting (con, s_base);
}
g_assert (!nm_setting_connection_get_connection_type (s_con));
g_assert (nm_connection_get_setting_by_name (con, type) == s_base);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
nmtst_connection_normalize (con);
g_assert_cmpstr (nm_connection_get_connection_type (con), ==, type);
g_assert (nm_connection_get_setting_by_name (con, type) == s_base);
}
static NMSetting *
_add_setting_fcn_adsl (NMConnection *con)
{
NMSetting *setting;
setting = g_object_new (NM_TYPE_SETTING_ADSL,
NM_SETTING_ADSL_USERNAME, "test-user",
NM_SETTING_ADSL_PROTOCOL, NM_SETTING_ADSL_PROTOCOL_PPPOA,
NM_SETTING_ADSL_ENCAPSULATION, NM_SETTING_ADSL_ENCAPSULATION_VCMUX,
NULL);
nm_connection_add_setting (con, setting);
return setting;
}
static NMSetting *
_add_setting_fcn_bluetooth (NMConnection *con)
{
NMSetting *setting;
setting = g_object_new (NM_TYPE_SETTING_BLUETOOTH,
NM_SETTING_BLUETOOTH_BDADDR, "11:22:33:44:55:66",
NM_SETTING_BLUETOOTH_TYPE, NM_SETTING_BLUETOOTH_TYPE_PANU,
NULL);
nm_connection_add_setting (con, setting);
return setting;
}
static NMSetting *
_add_setting_fcn_bond (NMConnection *con)
{
NMSetting *setting;
NMSettingConnection *s_con;
setting = g_object_new (NM_TYPE_SETTING_BOND, NULL);
nm_connection_add_setting (con, setting);
s_con = nm_connection_get_setting_connection (con);
g_object_set (s_con,
NM_SETTING_CONNECTION_INTERFACE_NAME, "test-bond",
NULL);
return setting;
}
static NMSetting *
_add_setting_fcn_bridge (NMConnection *con)
{
NMSetting *setting;
NMSettingConnection *s_con;
setting = g_object_new (NM_TYPE_SETTING_BRIDGE, NULL);
nm_connection_add_setting (con, setting);
s_con = nm_connection_get_setting_connection (con);
g_object_set (s_con,
NM_SETTING_CONNECTION_INTERFACE_NAME, "test-bridge",
NULL);
return setting;
}
static NMSetting *
_add_setting_fcn_cdma (NMConnection *con)
{
NMSetting *setting;
setting = g_object_new (NM_TYPE_SETTING_CDMA,
NM_SETTING_CDMA_NUMBER, "test-number",
NULL);
nm_connection_add_setting (con, setting);
return setting;
}
static NMSetting *
_add_setting_fcn_infiniband (NMConnection *con)
{
NMSetting *setting;
setting = g_object_new (NM_TYPE_SETTING_INFINIBAND,
NM_SETTING_INFINIBAND_TRANSPORT_MODE, "connected",
NULL);
nm_connection_add_setting (con, setting);
return setting;
}
static NMSetting *
_add_setting_fcn_olpc_mesh (NMConnection *con)
{
NMSetting *setting;
const char *ssid_data = "ssid-test";
GBytes *ssid;
ssid = g_bytes_new (ssid_data, strlen (ssid_data));
setting = g_object_new (NM_TYPE_SETTING_OLPC_MESH,
NM_SETTING_OLPC_MESH_SSID, ssid,
NM_SETTING_OLPC_MESH_CHANNEL, 1,
NULL);
g_bytes_unref (ssid);
nm_connection_add_setting (con, setting);
return setting;
}
static NMSetting *
_add_setting_fcn_team (NMConnection *con)
{
NMSetting *setting;
NMSettingConnection *s_con;
setting = g_object_new (NM_TYPE_SETTING_TEAM, NULL);
nm_connection_add_setting (con, setting);
s_con = nm_connection_get_setting_connection (con);
g_object_set (s_con,
NM_SETTING_CONNECTION_INTERFACE_NAME, "test-team",
NULL);
return setting;
}
static NMSetting *
_add_setting_fcn_vlan (NMConnection *con)
{
NMSetting *setting;
setting = g_object_new (NM_TYPE_SETTING_VLAN,
NM_SETTING_VLAN_PARENT, "test-parent",
NULL);
nm_connection_add_setting (con, setting);
return setting;
}
static NMSetting *
_add_setting_fcn_vpn (NMConnection *con)
{
NMSetting *setting;
setting = g_object_new (NM_TYPE_SETTING_VPN,
NM_SETTING_VPN_SERVICE_TYPE, "test-vpn-service-type",
NULL);
nm_connection_add_setting (con, setting);
return setting;
}
static NMSetting *
_add_setting_fcn_wimax (NMConnection *con)
{
NMSetting *setting;
setting = g_object_new (NM_TYPE_SETTING_WIMAX,
NM_SETTING_WIMAX_NETWORK_NAME, "test-network",
NULL);
nm_connection_add_setting (con, setting);
return setting;
}
static NMSetting *
_add_setting_fcn_wireless (NMConnection *con)
{
NMSetting *setting;
const char *ssid_data = "ssid-test";
GBytes *ssid;
ssid = g_bytes_new (ssid_data, strlen (ssid_data));
setting = g_object_new (NM_TYPE_SETTING_WIRELESS,
NM_SETTING_WIRELESS_SSID, ssid,
NULL);
g_bytes_unref (ssid);
nm_connection_add_setting (con, setting);
return setting;
}
static void
_prepare_normalizable_fcn_vlan (NMConnection *con)
{
nm_connection_add_setting (con, g_object_new (NM_TYPE_SETTING_WIRED,
NM_SETTING_WIRED_MAC_ADDRESS, "11:22:33:44:55:66",
NULL));
}
static void
test_connection_normalize_type (void)
{
guint i;
struct {
const char *type;
gboolean normalizable;
NMSetting *(*add_setting_fcn) (NMConnection *con);
void (*prepare_normalizable_fcn) (NMConnection *con);
} types[] = {
{ NM_SETTING_GENERIC_SETTING_NAME, TRUE },
{ NM_SETTING_GSM_SETTING_NAME, TRUE },
{ NM_SETTING_WIRED_SETTING_NAME, TRUE },
{ NM_SETTING_VLAN_SETTING_NAME, TRUE, _add_setting_fcn_vlan, _prepare_normalizable_fcn_vlan },
{ NM_SETTING_ADSL_SETTING_NAME, FALSE, _add_setting_fcn_adsl },
{ NM_SETTING_BLUETOOTH_SETTING_NAME, FALSE, _add_setting_fcn_bluetooth },
{ NM_SETTING_BOND_SETTING_NAME, FALSE, _add_setting_fcn_bond },
{ NM_SETTING_BRIDGE_SETTING_NAME, FALSE, _add_setting_fcn_bridge },
{ NM_SETTING_CDMA_SETTING_NAME, FALSE, _add_setting_fcn_cdma },
{ NM_SETTING_INFINIBAND_SETTING_NAME, FALSE, _add_setting_fcn_infiniband },
{ NM_SETTING_OLPC_MESH_SETTING_NAME, FALSE, _add_setting_fcn_olpc_mesh },
{ NM_SETTING_TEAM_SETTING_NAME, FALSE, _add_setting_fcn_team },
{ NM_SETTING_VLAN_SETTING_NAME, FALSE, _add_setting_fcn_vlan },
{ NM_SETTING_VPN_SETTING_NAME, FALSE, _add_setting_fcn_vpn },
{ NM_SETTING_WIMAX_SETTING_NAME, FALSE, _add_setting_fcn_wimax },
{ NM_SETTING_WIRELESS_SETTING_NAME, FALSE, _add_setting_fcn_wireless },
{ 0 },
};
for (i = 0; types[i].type; i++) {
const char *type = types[i].type;
if (types[i].normalizable)
_test_connection_normalize_type_normalizable_setting (type, types[i].prepare_normalizable_fcn);
else
_test_connection_normalize_type_unnormalizable_setting (type);
_test_connection_normalize_type_normalizable_type (type, types[i].add_setting_fcn);
}
}
static void
test_connection_normalize_slave_type_1 (void)
{
gs_unref_object NMConnection *con = NULL;
NMSettingConnection *s_con;
con = nmtst_create_minimal_connection ("test_connection_normalize_slave_type_1",
"cc4cd5df-45dc-483e-b291-6b76c2338ecb",
NM_SETTING_WIRED_SETTING_NAME, &s_con);
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, "invalid-type",
NULL);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (!nm_connection_get_setting_by_name (con, NM_SETTING_BRIDGE_PORT_SETTING_NAME));
g_object_set (s_con,
NM_SETTING_CONNECTION_SLAVE_TYPE, "bridge",
NULL);
g_assert (!nm_connection_get_setting_by_name (con, NM_SETTING_BRIDGE_PORT_SETTING_NAME));
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_SETTING);
nmtst_connection_normalize (con);
g_assert (nm_connection_get_setting_by_name (con, NM_SETTING_BRIDGE_PORT_SETTING_NAME));
g_assert_cmpstr (nm_setting_connection_get_slave_type (s_con), ==, NM_SETTING_BRIDGE_SETTING_NAME);
}
static void
test_connection_normalize_slave_type_2 (void)
{
gs_unref_object NMConnection *con = NULL;
NMSettingConnection *s_con;
con = nmtst_create_minimal_connection ("test_connection_normalize_slave_type_2",
"40bea008-ca72-439a-946b-e65f827656f9",
NM_SETTING_WIRED_SETTING_NAME, &s_con);
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, "invalid-type",
NULL);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
g_assert (!nm_connection_get_setting_by_name (con, NM_SETTING_BRIDGE_PORT_SETTING_NAME));
g_object_set (s_con,
NM_SETTING_CONNECTION_SLAVE_TYPE, NULL,
NULL);
nm_connection_add_setting (con, nm_setting_bridge_port_new ());
g_assert (nm_connection_get_setting_by_name (con, NM_SETTING_BRIDGE_PORT_SETTING_NAME));
g_assert_cmpstr (nm_setting_connection_get_slave_type (s_con), ==, NULL);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
nmtst_connection_normalize (con);
g_assert (nm_connection_get_setting_by_name (con, NM_SETTING_BRIDGE_PORT_SETTING_NAME));
g_assert_cmpstr (nm_setting_connection_get_slave_type (s_con), ==, NM_SETTING_BRIDGE_SETTING_NAME);
}
static void
test_connection_normalize_infiniband_mtu (void)
{
gs_unref_object NMConnection *con = NULL;
NMSettingInfiniband *s_infini;
libnm/infiniband: lift restriction of MTU to 2044 for IPoIB in "datagram" mode Traditionally, the MTU in "datagram" transport mode was restricted to 2044. That is no longer the case, relax that. In fact, choose a very large maximum and don't differenciate between "connected" mode (they now both use now 65520). This is only the limitation of the connection profile. Whether setting such large MTUs actually works must be determined when activating the profile. Initscripts "ifup-ib" from rdma-core package originally had a limit of 2044. This was raised to 4092 in rh#1186498. It is suggested to raise it further in bug rh#1647541. In general, kernel often does not allow setting large MTUs. And even if it allows it, it may not work because it also requires the entire network to be configured accordingly. But that means, it is generally not helpful to limit the MTU in the connection profile too strictly. Just allow large MTUs, we need to see at activation time whether the configuration works. Note also that all other setting types don't validate the range for MTU at all. Related: https://bugzilla.redhat.com/show_bug.cgi?id=1186498 Related: https://bugzilla.redhat.com/show_bug.cgi?id=1593334 (rdma-core: raise limit from 2044 to 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1647541 (rdma-core: raise limit beyond 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1532638#c4 (rdma-core: MTU related discussion) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1534869 (NetworkManager bug about this topic, but with lots of unrelated discussion. See in particular #c16) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1653494
2019-04-05 09:49:38 +02:00
guint mtu_regular = nmtst_rand_select (2044, 2045, 65520);
con = nmtst_create_minimal_connection ("test_connection_normalize_infiniband_mtu", NULL,
NM_SETTING_INFINIBAND_SETTING_NAME, NULL);
s_infini = nm_connection_get_setting_infiniband (con);
g_object_set (s_infini,
NM_SETTING_INFINIBAND_TRANSPORT_MODE, "connected",
NULL);
nmtst_assert_connection_verifies_and_normalizable (con);
g_object_set (s_infini,
NM_SETTING_INFINIBAND_TRANSPORT_MODE, "datagram",
libnm/infiniband: lift restriction of MTU to 2044 for IPoIB in "datagram" mode Traditionally, the MTU in "datagram" transport mode was restricted to 2044. That is no longer the case, relax that. In fact, choose a very large maximum and don't differenciate between "connected" mode (they now both use now 65520). This is only the limitation of the connection profile. Whether setting such large MTUs actually works must be determined when activating the profile. Initscripts "ifup-ib" from rdma-core package originally had a limit of 2044. This was raised to 4092 in rh#1186498. It is suggested to raise it further in bug rh#1647541. In general, kernel often does not allow setting large MTUs. And even if it allows it, it may not work because it also requires the entire network to be configured accordingly. But that means, it is generally not helpful to limit the MTU in the connection profile too strictly. Just allow large MTUs, we need to see at activation time whether the configuration works. Note also that all other setting types don't validate the range for MTU at all. Related: https://bugzilla.redhat.com/show_bug.cgi?id=1186498 Related: https://bugzilla.redhat.com/show_bug.cgi?id=1593334 (rdma-core: raise limit from 2044 to 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1647541 (rdma-core: raise limit beyond 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1532638#c4 (rdma-core: MTU related discussion) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1534869 (NetworkManager bug about this topic, but with lots of unrelated discussion. See in particular #c16) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1653494
2019-04-05 09:49:38 +02:00
NM_SETTING_INFINIBAND_MTU, (guint) mtu_regular,
NULL);
nmtst_assert_connection_verifies_and_normalizable (con);
nmtst_connection_normalize (con);
libnm/infiniband: lift restriction of MTU to 2044 for IPoIB in "datagram" mode Traditionally, the MTU in "datagram" transport mode was restricted to 2044. That is no longer the case, relax that. In fact, choose a very large maximum and don't differenciate between "connected" mode (they now both use now 65520). This is only the limitation of the connection profile. Whether setting such large MTUs actually works must be determined when activating the profile. Initscripts "ifup-ib" from rdma-core package originally had a limit of 2044. This was raised to 4092 in rh#1186498. It is suggested to raise it further in bug rh#1647541. In general, kernel often does not allow setting large MTUs. And even if it allows it, it may not work because it also requires the entire network to be configured accordingly. But that means, it is generally not helpful to limit the MTU in the connection profile too strictly. Just allow large MTUs, we need to see at activation time whether the configuration works. Note also that all other setting types don't validate the range for MTU at all. Related: https://bugzilla.redhat.com/show_bug.cgi?id=1186498 Related: https://bugzilla.redhat.com/show_bug.cgi?id=1593334 (rdma-core: raise limit from 2044 to 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1647541 (rdma-core: raise limit beyond 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1532638#c4 (rdma-core: MTU related discussion) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1534869 (NetworkManager bug about this topic, but with lots of unrelated discussion. See in particular #c16) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1653494
2019-04-05 09:49:38 +02:00
g_assert_cmpint (mtu_regular, ==, nm_setting_infiniband_get_mtu (s_infini));
g_object_set (s_infini,
NM_SETTING_INFINIBAND_TRANSPORT_MODE, "datagram",
libnm/infiniband: lift restriction of MTU to 2044 for IPoIB in "datagram" mode Traditionally, the MTU in "datagram" transport mode was restricted to 2044. That is no longer the case, relax that. In fact, choose a very large maximum and don't differenciate between "connected" mode (they now both use now 65520). This is only the limitation of the connection profile. Whether setting such large MTUs actually works must be determined when activating the profile. Initscripts "ifup-ib" from rdma-core package originally had a limit of 2044. This was raised to 4092 in rh#1186498. It is suggested to raise it further in bug rh#1647541. In general, kernel often does not allow setting large MTUs. And even if it allows it, it may not work because it also requires the entire network to be configured accordingly. But that means, it is generally not helpful to limit the MTU in the connection profile too strictly. Just allow large MTUs, we need to see at activation time whether the configuration works. Note also that all other setting types don't validate the range for MTU at all. Related: https://bugzilla.redhat.com/show_bug.cgi?id=1186498 Related: https://bugzilla.redhat.com/show_bug.cgi?id=1593334 (rdma-core: raise limit from 2044 to 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1647541 (rdma-core: raise limit beyond 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1532638#c4 (rdma-core: MTU related discussion) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1534869 (NetworkManager bug about this topic, but with lots of unrelated discussion. See in particular #c16) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1653494
2019-04-05 09:49:38 +02:00
NM_SETTING_INFINIBAND_MTU, (guint) 65521,
NULL);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
nmtst_connection_normalize (con);
libnm/infiniband: lift restriction of MTU to 2044 for IPoIB in "datagram" mode Traditionally, the MTU in "datagram" transport mode was restricted to 2044. That is no longer the case, relax that. In fact, choose a very large maximum and don't differenciate between "connected" mode (they now both use now 65520). This is only the limitation of the connection profile. Whether setting such large MTUs actually works must be determined when activating the profile. Initscripts "ifup-ib" from rdma-core package originally had a limit of 2044. This was raised to 4092 in rh#1186498. It is suggested to raise it further in bug rh#1647541. In general, kernel often does not allow setting large MTUs. And even if it allows it, it may not work because it also requires the entire network to be configured accordingly. But that means, it is generally not helpful to limit the MTU in the connection profile too strictly. Just allow large MTUs, we need to see at activation time whether the configuration works. Note also that all other setting types don't validate the range for MTU at all. Related: https://bugzilla.redhat.com/show_bug.cgi?id=1186498 Related: https://bugzilla.redhat.com/show_bug.cgi?id=1593334 (rdma-core: raise limit from 2044 to 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1647541 (rdma-core: raise limit beyond 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1532638#c4 (rdma-core: MTU related discussion) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1534869 (NetworkManager bug about this topic, but with lots of unrelated discussion. See in particular #c16) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1653494
2019-04-05 09:49:38 +02:00
g_assert_cmpint (65520, ==, nm_setting_infiniband_get_mtu (s_infini));
g_object_set (s_infini,
NM_SETTING_INFINIBAND_TRANSPORT_MODE, "connected",
libnm/infiniband: lift restriction of MTU to 2044 for IPoIB in "datagram" mode Traditionally, the MTU in "datagram" transport mode was restricted to 2044. That is no longer the case, relax that. In fact, choose a very large maximum and don't differenciate between "connected" mode (they now both use now 65520). This is only the limitation of the connection profile. Whether setting such large MTUs actually works must be determined when activating the profile. Initscripts "ifup-ib" from rdma-core package originally had a limit of 2044. This was raised to 4092 in rh#1186498. It is suggested to raise it further in bug rh#1647541. In general, kernel often does not allow setting large MTUs. And even if it allows it, it may not work because it also requires the entire network to be configured accordingly. But that means, it is generally not helpful to limit the MTU in the connection profile too strictly. Just allow large MTUs, we need to see at activation time whether the configuration works. Note also that all other setting types don't validate the range for MTU at all. Related: https://bugzilla.redhat.com/show_bug.cgi?id=1186498 Related: https://bugzilla.redhat.com/show_bug.cgi?id=1593334 (rdma-core: raise limit from 2044 to 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1647541 (rdma-core: raise limit beyond 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1532638#c4 (rdma-core: MTU related discussion) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1534869 (NetworkManager bug about this topic, but with lots of unrelated discussion. See in particular #c16) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1653494
2019-04-05 09:49:38 +02:00
NM_SETTING_INFINIBAND_MTU, (guint) mtu_regular,
NULL);
nmtst_assert_connection_verifies_without_normalization (con);
libnm/infiniband: lift restriction of MTU to 2044 for IPoIB in "datagram" mode Traditionally, the MTU in "datagram" transport mode was restricted to 2044. That is no longer the case, relax that. In fact, choose a very large maximum and don't differenciate between "connected" mode (they now both use now 65520). This is only the limitation of the connection profile. Whether setting such large MTUs actually works must be determined when activating the profile. Initscripts "ifup-ib" from rdma-core package originally had a limit of 2044. This was raised to 4092 in rh#1186498. It is suggested to raise it further in bug rh#1647541. In general, kernel often does not allow setting large MTUs. And even if it allows it, it may not work because it also requires the entire network to be configured accordingly. But that means, it is generally not helpful to limit the MTU in the connection profile too strictly. Just allow large MTUs, we need to see at activation time whether the configuration works. Note also that all other setting types don't validate the range for MTU at all. Related: https://bugzilla.redhat.com/show_bug.cgi?id=1186498 Related: https://bugzilla.redhat.com/show_bug.cgi?id=1593334 (rdma-core: raise limit from 2044 to 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1647541 (rdma-core: raise limit beyond 4092 in ifup-ib) Related: https://bugzilla.redhat.com/show_bug.cgi?id=1532638#c4 (rdma-core: MTU related discussion) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1534869 (NetworkManager bug about this topic, but with lots of unrelated discussion. See in particular #c16) Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1653494
2019-04-05 09:49:38 +02:00
g_assert_cmpint (mtu_regular, ==, nm_setting_infiniband_get_mtu (s_infini));
g_object_set (s_infini,
NM_SETTING_INFINIBAND_TRANSPORT_MODE, "connected",
NM_SETTING_INFINIBAND_MTU, (guint) 65521,
NULL);
libnm-core: merge NMSetting*Error into NMConnectionError Each setting type was defining its own error type, but most of them had exactly the same three errors ("unknown", "missing property", and "invalid property"), and none of the other values was of much use programmatically anyway. So, this commit merges NMSettingError, NMSettingAdslError, etc, all into NMConnectionError. (The reason for merging into NMConnectionError rather than NMSettingError is that we also already have "NMSettingsError", for errors related to the settings service, so "NMConnectionError" is a less-confusable name for settings/connection errors than "NMSettingError".) Also, make sure that all of the affected error messages are localized, and (where appropriate) prefix them with the relevant property name. Renamed error codes: NM_SETTING_ERROR_PROPERTY_NOT_FOUND -> NM_CONNECTION_ERROR_PROPERTY_NOT_FOUND NM_SETTING_ERROR_PROPERTY_NOT_SECRET -> NM_CONNECTION_ERROR_PROPERTY_NOT_SECRET Remapped error codes: NM_SETTING_*_ERROR_MISSING_PROPERTY -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_*_ERROR_INVALID_PROPERTY -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_ERROR_PROPERTY_TYPE_MISMATCH -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BLUETOOTH_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_INVALID_SETTING NM_SETTING_BOND_ERROR_INVALID_OPTION -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_BOND_ERROR_MISSING_OPTION -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_CONNECTION_ERROR_TYPE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_CONNECTION_ERROR_SLAVE_SETTING_NOT_FOUND -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_IP4_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_IP6_CONFIG_ERROR_NOT_ALLOWED_FOR_METHOD -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_VLAN_ERROR_INVALID_PARENT -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_MISSING_802_1X_SETTING -> NM_CONNECTION_ERROR_MISSING_SETTING NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_802_1X -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_LEAP_REQUIRES_USERNAME -> NM_CONNECTION_ERROR_MISSING_PROPERTY NM_SETTING_WIRELESS_SECURITY_ERROR_SHARED_KEY_REQUIRES_WEP -> NM_CONNECTION_ERROR_INVALID_PROPERTY NM_SETTING_WIRELESS_ERROR_CHANNEL_REQUIRES_BAND -> NM_CONNECTION_ERROR_MISSING_PROPERTY Dropped error codes (were previously defined but unused): NM_SETTING_CDMA_ERROR_MISSING_SERIAL_SETTING NM_SETTING_CONNECTION_ERROR_IP_CONFIG_NOT_ALLOWED NM_SETTING_GSM_ERROR_MISSING_SERIAL_SETTING NM_SETTING_PPP_ERROR_REQUIRE_MPPE_NOT_ALLOWED NM_SETTING_PPPOE_ERROR_MISSING_PPP_SETTING NM_SETTING_SERIAL_ERROR_MISSING_PPP_SETTING NM_SETTING_WIRELESS_ERROR_MISSING_SECURITY_SETTING
2014-10-20 13:52:23 -04:00
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
nmtst_connection_normalize (con);
g_assert_cmpint (65520, ==, nm_setting_infiniband_get_mtu (s_infini));
}
static void
test_connection_normalize_gateway_never_default (void)
{
gs_unref_object NMConnection *con = NULL;
NMSettingIPConfig *s_ip4, *s_ip6;
NMIPAddress *addr;
gs_free_error GError *error = NULL;
con = nmtst_create_minimal_connection ("test1", NULL, NM_SETTING_WIRED_SETTING_NAME, NULL);
nmtst_assert_connection_verifies_and_normalizable (con);
s_ip4 = (NMSettingIPConfig *) nm_setting_ip4_config_new ();
g_object_set (G_OBJECT (s_ip4),
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_MANUAL,
NULL);
addr = nm_ip_address_new (AF_INET, "1.1.1.1", 24, &error);
g_assert_no_error (error);
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
g_object_set (s_ip4,
NM_SETTING_IP_CONFIG_GATEWAY, "1.1.1.254",
NM_SETTING_IP_CONFIG_NEVER_DEFAULT, FALSE,
NULL);
s_ip6 = (NMSettingIPConfig *) nm_setting_ip6_config_new ();
g_object_set (s_ip6,
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP6_CONFIG_METHOD_AUTO,
NULL);
nm_connection_add_setting (con, (NMSetting *) s_ip4);
nm_connection_add_setting (con, (NMSetting *) s_ip6);
nm_connection_add_setting (con, nm_setting_proxy_new ());
nmtst_assert_connection_verifies_without_normalization (con);
g_assert_cmpstr ("1.1.1.254", ==, nm_setting_ip_config_get_gateway (s_ip4));
/* Now set never-default to TRUE and check that the gateway is
* removed during normalization
* */
g_object_set (s_ip4,
NM_SETTING_IP_CONFIG_NEVER_DEFAULT, TRUE,
NULL);
nmtst_assert_connection_verifies_after_normalization (con,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
nmtst_connection_normalize (con);
g_assert_cmpstr (NULL, ==, nm_setting_ip_config_get_gateway (s_ip4));
}
static void
test_connection_normalize_may_fail (void)
{
gs_unref_object NMConnection *con = NULL;
NMSettingIPConfig *s_ip4, *s_ip6;
con = nmtst_create_minimal_connection ("test2", NULL, NM_SETTING_WIRED_SETTING_NAME, NULL);
nmtst_assert_connection_verifies_and_normalizable (con);
s_ip4 = (NMSettingIPConfig *) nm_setting_ip4_config_new ();
g_object_set (G_OBJECT (s_ip4),
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_AUTO,
NM_SETTING_IP_CONFIG_MAY_FAIL, FALSE,
NULL);
s_ip6 = (NMSettingIPConfig *) nm_setting_ip6_config_new ();
g_object_set (s_ip6,
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP6_CONFIG_METHOD_AUTO,
NM_SETTING_IP_CONFIG_MAY_FAIL, FALSE,
NULL);
nm_connection_add_setting (con, (NMSetting *) s_ip4);
nm_connection_add_setting (con, (NMSetting *) s_ip6);
nmtst_assert_connection_verifies_and_normalizable (con);
/* Now set method=disabled/ignore and check that may-fail becomes TRUE
* after normalization
* */
g_object_set (s_ip4,
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_DISABLED,
NULL);
g_object_set (s_ip6,
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP6_CONFIG_METHOD_IGNORE,
NULL);
nmtst_assert_connection_verifies (con);
nmtst_connection_normalize (con);
g_assert_cmpint (nm_setting_ip_config_get_may_fail (s_ip4), ==, TRUE);
g_assert_cmpint (nm_setting_ip_config_get_may_fail (s_ip6), ==, TRUE);
}
static void
test_connection_normalize_shared_addresses (void)
{
gs_unref_object NMConnection *con = NULL;
NMSettingIPConfig *s_ip4, *s_ip6;
NMIPAddress *addr;
gs_free_error GError *error = NULL;
con = nmtst_create_minimal_connection ("test1", NULL, NM_SETTING_WIRED_SETTING_NAME, NULL);
nmtst_assert_connection_verifies_and_normalizable (con);
s_ip4 = (NMSettingIPConfig *) nm_setting_ip4_config_new ();
g_object_set (G_OBJECT (s_ip4),
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_SHARED,
NULL);
addr = nm_ip_address_new (AF_INET, "1.1.1.1", 24, &error);
g_assert_no_error (error);
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
s_ip6 = (NMSettingIPConfig *) nm_setting_ip6_config_new ();
g_object_set (s_ip6,
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP6_CONFIG_METHOD_AUTO,
NULL);
nm_connection_add_setting (con, (NMSetting *) s_ip4);
nm_connection_add_setting (con, (NMSetting *) s_ip6);
nmtst_assert_connection_verifies_and_normalizable (con);
/* Now we add other addresses and check that they are
* removed during normalization
* */
addr = nm_ip_address_new (AF_INET, "2.2.2.2", 24, &error);
g_assert_no_error (error);
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
addr = nm_ip_address_new (AF_INET, "3.3.3.3", 24, &error);
g_assert_no_error (error);
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
nmtst_assert_connection_verifies_after_normalization (con,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
nmtst_connection_normalize (con);
g_assert_cmpuint (nm_setting_ip_config_get_num_addresses (s_ip4), ==, 1);
addr = nm_setting_ip_config_get_address (s_ip4, 0);
g_assert_cmpstr (nm_ip_address_get_address (addr), ==, "1.1.1.1");
}
static void
test_connection_normalize_ovs_interface_type_system (gconstpointer test_data)
{
const guint TEST_CASE = GPOINTER_TO_UINT (test_data);
gs_unref_object NMConnection *con = NULL;
NMSettingConnection *s_con;
NMSettingOvsInterface *s_ovs_if;
con = nmtst_create_minimal_connection ("test_connection_normalize_ovs_interface_type_system",
NULL,
NM_SETTING_WIRED_SETTING_NAME, &s_con);
switch (TEST_CASE) {
case 1:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_SETTING);
nmtst_connection_normalize (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME);
s_ovs_if = nm_connection_get_setting_ovs_interface (con);
g_assert (s_ovs_if);
g_assert_cmpstr (nm_setting_ovs_interface_get_interface_type (s_ovs_if), ==, "system");
break;
case 2:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
s_ovs_if = NM_SETTING_OVS_INTERFACE (nm_setting_ovs_interface_new ());
nm_connection_add_setting (con, NM_SETTING (s_ovs_if));
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
nmtst_connection_normalize (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME);
g_assert (s_ovs_if == nm_connection_get_setting_ovs_interface (con));
g_assert_cmpstr (nm_setting_ovs_interface_get_interface_type (s_ovs_if), ==, "system");
break;
case 3:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
s_ovs_if = NM_SETTING_OVS_INTERFACE (nm_setting_ovs_interface_new ());
nm_connection_add_setting (con, NM_SETTING (s_ovs_if));
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "system",
NULL);
nmtst_assert_connection_verifies_without_normalization (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME);
break;
case 4:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
s_ovs_if = NM_SETTING_OVS_INTERFACE (nm_setting_ovs_interface_new ());
nm_connection_add_setting (con, NM_SETTING (s_ovs_if));
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "internal",
NULL);
/* the setting doesn't verify, because the interface-type must be "system". */
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
break;
case 5:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NULL);
s_ovs_if = NM_SETTING_OVS_INTERFACE (nm_setting_ovs_interface_new ());
nm_connection_add_setting (con, NM_SETTING (s_ovs_if));
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "system",
NULL);
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
nmtst_connection_normalize (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_WIRED_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME);
g_assert (s_con == nm_connection_get_setting_connection (con));
g_assert_cmpstr (nm_setting_connection_get_slave_type (s_con), ==, NM_SETTING_OVS_PORT_SETTING_NAME);
break;
case 6:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_BRIDGE_SETTING_NAME,
NULL);
s_ovs_if = NM_SETTING_OVS_INTERFACE (nm_setting_ovs_interface_new ());
nm_connection_add_setting (con, NM_SETTING (s_ovs_if));
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "system",
NULL);
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
break;
case 7:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_BRIDGE_SETTING_NAME,
NULL);
nm_connection_add_setting (con, nm_setting_bridge_port_new ());
s_ovs_if = NM_SETTING_OVS_INTERFACE (nm_setting_ovs_interface_new ());
nm_connection_add_setting (con, NM_SETTING (s_ovs_if));
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "system",
NULL);
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
break;
default:
g_assert_not_reached ();
break;
}
}
static void
test_connection_normalize_ovs_interface_type_ovs_interface (gconstpointer test_data)
{
const guint TEST_CASE = GPOINTER_TO_UINT (test_data);
gs_unref_object NMConnection *con = NULL;
NMSettingConnection *s_con;
NMSettingOvsInterface *s_ovs_if;
NMSettingOvsPatch *s_ovs_patch;
NMSettingIP4Config *s_ip4;
NMSettingIP6Config *s_ip6;
con = nmtst_create_minimal_connection ("test_connection_normalize_ovs_interface_type_ovs_interface",
NULL,
NM_SETTING_OVS_INTERFACE_SETTING_NAME, &s_con);
s_ovs_if = nm_connection_get_setting_ovs_interface (con);
g_assert (s_ovs_if);
switch (TEST_CASE) {
case 1:
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
break;
case 2:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NULL);
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
nmtst_connection_normalize (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_PROXY_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME);
g_assert (s_con == nm_connection_get_setting_connection (con));
g_assert (s_ovs_if == nm_connection_get_setting_ovs_interface (con));
g_assert_cmpstr (nm_setting_connection_get_slave_type (s_con), ==, NM_SETTING_OVS_PORT_SETTING_NAME);
g_assert_cmpstr (nm_setting_ovs_interface_get_interface_type (s_ovs_if), ==, "internal");
break;
case 3:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
nmtst_connection_normalize (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_PROXY_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME);
g_assert (s_con == nm_connection_get_setting_connection (con));
g_assert (s_ovs_if == nm_connection_get_setting_ovs_interface (con));
g_assert_cmpstr (nm_setting_connection_get_slave_type (s_con), ==, NM_SETTING_OVS_PORT_SETTING_NAME);
g_assert_cmpstr (nm_setting_ovs_interface_get_interface_type (s_ovs_if), ==, "internal");
break;
case 4:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NULL);
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "internal",
NULL);
nmtst_assert_connection_verifies_after_normalization (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
nmtst_connection_normalize (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_PROXY_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME);
g_assert (s_con == nm_connection_get_setting_connection (con));
g_assert (s_ovs_if == nm_connection_get_setting_ovs_interface (con));
g_assert_cmpstr (nm_setting_connection_get_slave_type (s_con), ==, NM_SETTING_OVS_PORT_SETTING_NAME);
g_assert_cmpstr (nm_setting_ovs_interface_get_interface_type (s_ovs_if), ==, "internal");
break;
case 5:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "internal",
NULL);
nm_connection_add_setting (con, nm_setting_ip4_config_new ());
nm_connection_add_setting (con, nm_setting_ip6_config_new ());
nm_connection_add_setting (con, nm_setting_proxy_new ());
s_ip4 = NM_SETTING_IP4_CONFIG (nm_connection_get_setting_ip4_config (con));
s_ip6 = NM_SETTING_IP6_CONFIG (nm_connection_get_setting_ip6_config (con));
g_object_set (s_ip4,
NM_SETTING_IP_CONFIG_METHOD, "auto",
NULL);
g_object_set (s_ip6,
NM_SETTING_IP_CONFIG_METHOD, "auto",
NULL);
nmtst_assert_connection_verifies_without_normalization (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_PROXY_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME);
break;
case 6:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "internal",
NULL);
nmtst_assert_connection_verifies_and_normalizable (con);
nmtst_connection_normalize (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_PROXY_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME);
g_assert (s_con == nm_connection_get_setting_connection (con));
g_assert (s_ovs_if == nm_connection_get_setting_ovs_interface (con));
g_assert_cmpstr (nm_setting_connection_get_slave_type (s_con), ==, NM_SETTING_OVS_PORT_SETTING_NAME);
g_assert_cmpstr (nm_setting_ovs_interface_get_interface_type (s_ovs_if), ==, "internal");
break;
case 7:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "system",
NULL);
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
break;
case 8:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "bogus",
NULL);
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_INVALID_PROPERTY);
break;
case 9:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "patch",
NULL);
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_SETTING);
break;
case 10:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "patch",
NULL);
nm_connection_add_setting (con, nm_setting_ovs_patch_new ());
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
break;
case 11:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NM_SETTING_CONNECTION_INTERFACE_NAME, "adsf",
NULL);
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "patch",
NULL);
nm_connection_add_setting (con, nm_setting_ovs_patch_new ());
nmtst_assert_connection_unnormalizable (con, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_MISSING_PROPERTY);
break;
case 12:
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER, "master0",
NM_SETTING_CONNECTION_SLAVE_TYPE, NM_SETTING_OVS_PORT_SETTING_NAME,
NM_SETTING_CONNECTION_INTERFACE_NAME, "adsf",
NULL);
g_object_set (s_ovs_if,
NM_SETTING_OVS_INTERFACE_TYPE, "patch",
NULL);
s_ovs_patch = NM_SETTING_OVS_PATCH (nm_setting_ovs_patch_new ());
nm_connection_add_setting (con, NM_SETTING (s_ovs_patch));
g_object_set (s_ovs_patch,
NM_SETTING_OVS_PATCH_PEER, "1.2.3.4",
NULL);
nmtst_assert_connection_verifies_and_normalizable (con);
nmtst_connection_normalize (con);
nmtst_assert_connection_has_settings (con, NM_SETTING_CONNECTION_SETTING_NAME,
NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_PROXY_SETTING_NAME,
NM_SETTING_OVS_INTERFACE_SETTING_NAME,
NM_SETTING_OVS_PATCH_SETTING_NAME);
g_assert (s_con == nm_connection_get_setting_connection (con));
g_assert (s_ovs_if == nm_connection_get_setting_ovs_interface (con));
g_assert_cmpstr (nm_setting_connection_get_slave_type (s_con), ==, NM_SETTING_OVS_PORT_SETTING_NAME);
g_assert_cmpstr (nm_setting_ovs_interface_get_interface_type (s_ovs_if), ==, "patch");
break;
default:
g_assert_not_reached ();
}
}
static void
test_setting_ip4_gateway (void)
{
NMConnection *conn;
NMSettingIPConfig *s_ip4;
NMIPAddress *addr;
GVariant *conn_dict, *ip4_dict, *value;
GVariantIter iter;
GVariant *addr_var;
guint32 addr_vals_0[] = { htonl (0xc0a8010a), 0x00000018, htonl (0x00000000) };
guint32 addr_vals_1[] = { htonl (0xc0a8010b), 0x00000018, htonl (0xc0a80101) };
GVariantBuilder addrs_builder;
GError *error = NULL;
nmtst_assert_ip4_address (addr_vals_0[0], "192.168.1.10");
/* When serializing on the daemon side, ipv4.gateway is copied to the first
* entry of ipv4.addresses
*/
conn = nmtst_create_minimal_connection ("test_setting_ip4_gateway", NULL,
NM_SETTING_WIRED_SETTING_NAME, NULL);
s_ip4 = (NMSettingIPConfig *) nm_setting_ip4_config_new ();
g_object_set (s_ip4,
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP4_CONFIG_METHOD_MANUAL,
NM_SETTING_IP_CONFIG_GATEWAY, "192.168.1.1",
NULL);
nm_connection_add_setting (conn, NM_SETTING (s_ip4));
addr = nm_ip_address_new (AF_INET, "192.168.1.10", 24, &error);
g_assert_no_error (error);
nm_setting_ip_config_add_address (s_ip4, addr);
nm_ip_address_unref (addr);
_nm_utils_is_manager_process = TRUE;
conn_dict = nm_connection_to_dbus (conn, NM_CONNECTION_SERIALIZE_ALL);
_nm_utils_is_manager_process = FALSE;
g_object_unref (conn);
ip4_dict = g_variant_lookup_value (conn_dict, NM_SETTING_IP4_CONFIG_SETTING_NAME, NM_VARIANT_TYPE_SETTING);
g_assert (ip4_dict != NULL);
value = g_variant_lookup_value (ip4_dict, NM_SETTING_IP_CONFIG_GATEWAY, G_VARIANT_TYPE_STRING);
g_assert (value != NULL);
g_assert_cmpstr (g_variant_get_string (value, NULL), ==, "192.168.1.1");
g_variant_unref (value);
value = g_variant_lookup_value (ip4_dict, NM_SETTING_IP_CONFIG_ADDRESSES, G_VARIANT_TYPE ("aau"));
g_assert (value != NULL);
g_variant_iter_init (&iter, value);
while (g_variant_iter_next (&iter, "@au", &addr_var)) {
const guint32 *addr_array;
gsize length;
addr_array = g_variant_get_fixed_array (addr_var, &length, sizeof (guint32));
g_assert_cmpint (length, ==, 3);
nmtst_assert_ip4_address (addr_array[2], "192.168.1.1");
g_variant_unref (addr_var);
}
g_variant_unref (value);
g_variant_unref (ip4_dict);
/* When deserializing an old-style connection, the first non-0 gateway in
* ipv4.addresses is copied to :gateway.
*/
NMTST_VARIANT_EDITOR (conn_dict,
NMTST_VARIANT_DROP_PROPERTY (NM_SETTING_IP4_CONFIG_SETTING_NAME,
NM_SETTING_IP_CONFIG_GATEWAY);
NMTST_VARIANT_DROP_PROPERTY (NM_SETTING_IP4_CONFIG_SETTING_NAME,
"address-data");
);
conn = _connection_new_from_dbus (conn_dict, &error);
g_assert_no_error (error);
s_ip4 = (NMSettingIPConfig *) nm_connection_get_setting_ip4_config (conn);
g_assert_cmpstr (nm_setting_ip_config_get_gateway (s_ip4), ==, "192.168.1.1");
g_object_unref (conn);
/* Try again with the gateway in the second address. */
g_variant_builder_init (&addrs_builder, G_VARIANT_TYPE ("aau"));
g_variant_builder_add (&addrs_builder, "@au",
g_variant_new_fixed_array (G_VARIANT_TYPE_UINT32,
addr_vals_0, 3, 4));
g_variant_builder_add (&addrs_builder, "@au",
g_variant_new_fixed_array (G_VARIANT_TYPE_UINT32,
addr_vals_1, 3, 4));
NMTST_VARIANT_EDITOR (conn_dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_IP4_CONFIG_SETTING_NAME,
"addresses", "aau", &addrs_builder);
);
conn = _connection_new_from_dbus (conn_dict, &error);
g_assert_no_error (error);
g_variant_unref (conn_dict);
s_ip4 = (NMSettingIPConfig *) nm_connection_get_setting_ip4_config (conn);
g_assert_cmpstr (nm_setting_ip_config_get_gateway (s_ip4), ==, "192.168.1.1");
g_object_unref (conn);
}
static void
test_setting_ip6_gateway (void)
{
NMConnection *conn;
NMSettingIPConfig *s_ip6;
NMIPAddress *addr;
GVariant *conn_dict, *ip6_dict, *value;
GVariantIter iter;
GVariant *gateway_var;
GVariantBuilder addrs_builder;
guint8 addr_bytes_0[] = { 0xab, 0xcd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a };
guint8 addr_bytes_1[] = { 0xab, 0xcd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0b };
guint8 gateway_bytes_1[] = { 0xab, 0xcd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 };
GError *error = NULL;
/* When serializing on the daemon side, ipv6.gateway is copied to the first
* entry of ipv6.addresses
*/
conn = nmtst_create_minimal_connection ("test_setting_ip6_gateway", NULL,
NM_SETTING_WIRED_SETTING_NAME, NULL);
s_ip6 = (NMSettingIPConfig *) nm_setting_ip6_config_new ();
g_object_set (s_ip6,
NM_SETTING_IP_CONFIG_METHOD, NM_SETTING_IP6_CONFIG_METHOD_MANUAL,
NM_SETTING_IP_CONFIG_GATEWAY, "abcd::1",
NULL);
nm_connection_add_setting (conn, NM_SETTING (s_ip6));
addr = nm_ip_address_new (AF_INET6, "abcd::10", 64, &error);
g_assert_no_error (error);
nm_setting_ip_config_add_address (s_ip6, addr);
nm_ip_address_unref (addr);
_nm_utils_is_manager_process = TRUE;
conn_dict = nm_connection_to_dbus (conn, NM_CONNECTION_SERIALIZE_ALL);
_nm_utils_is_manager_process = FALSE;
g_object_unref (conn);
ip6_dict = g_variant_lookup_value (conn_dict, NM_SETTING_IP6_CONFIG_SETTING_NAME, NM_VARIANT_TYPE_SETTING);
g_assert (ip6_dict != NULL);
value = g_variant_lookup_value (ip6_dict, NM_SETTING_IP_CONFIG_GATEWAY, G_VARIANT_TYPE_STRING);
g_assert (value != NULL);
g_assert_cmpstr (g_variant_get_string (value, NULL), ==, "abcd::1");
g_variant_unref (value);
value = g_variant_lookup_value (ip6_dict, NM_SETTING_IP_CONFIG_ADDRESSES, G_VARIANT_TYPE ("a(ayuay)"));
g_assert (value != NULL);
g_variant_iter_init (&iter, value);
while (g_variant_iter_next (&iter, "(@ayu@ay)", NULL, NULL, &gateway_var)) {
const guint8 *gateway_bytes;
gsize length;
gateway_bytes = g_variant_get_fixed_array (gateway_var, &length, 1);
g_assert_cmpint (length, ==, 16);
nmtst_assert_ip6_address ((struct in6_addr *) gateway_bytes, "abcd::1");
g_variant_unref (gateway_var);
}
g_variant_unref (value);
g_variant_unref (ip6_dict);
/* When deserializing an old-style connection, the first non-0 gateway in
* ipv6.addresses is copied to :gateway.
*/
NMTST_VARIANT_EDITOR (conn_dict,
NMTST_VARIANT_DROP_PROPERTY (NM_SETTING_IP6_CONFIG_SETTING_NAME,
NM_SETTING_IP_CONFIG_GATEWAY);
NMTST_VARIANT_DROP_PROPERTY (NM_SETTING_IP6_CONFIG_SETTING_NAME,
"address-data");
);
conn = _connection_new_from_dbus (conn_dict, &error);
g_assert_no_error (error);
s_ip6 = (NMSettingIPConfig *) nm_connection_get_setting_ip6_config (conn);
g_assert_cmpstr (nm_setting_ip_config_get_gateway (s_ip6), ==, "abcd::1");
g_object_unref (conn);
/* Try again with the gateway in the second address. */
g_variant_builder_init (&addrs_builder, G_VARIANT_TYPE ("a(ayuay)"));
g_variant_builder_add (&addrs_builder, "(@ayu@ay)",
g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
addr_bytes_0, 16, 1),
64,
g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
&in6addr_any, 16, 1));
g_variant_builder_add (&addrs_builder, "(@ayu@ay)",
g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
addr_bytes_1, 16, 1),
64,
g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
gateway_bytes_1, 16, 1));
NMTST_VARIANT_EDITOR (conn_dict,
NMTST_VARIANT_CHANGE_PROPERTY (NM_SETTING_IP6_CONFIG_SETTING_NAME,
"addresses", "a(ayuay)", &addrs_builder);
);
conn = _connection_new_from_dbus (conn_dict, &error);
g_assert_no_error (error);
g_variant_unref (conn_dict);
s_ip6 = (NMSettingIPConfig *) nm_connection_get_setting_ip6_config (conn);
g_assert_cmpstr (nm_setting_ip_config_get_gateway (s_ip6), ==, "abcd::1");
g_object_unref (conn);
}
typedef struct {
const char *str;
const guint8 expected[20];
const guint expected_len;
} HexItem;
static void
test_setting_compare_default_strv (void)
{
gs_unref_object NMConnection *c1 = NULL, *c2 = NULL;
char **strv;
NMSettingIPConfig *s_ip2, *s_ip1;
gboolean compare;
GHashTable *out_settings = NULL;
c1 = nmtst_create_minimal_connection ("test_compare_default_strv", NULL,
NM_SETTING_WIRED_SETTING_NAME, NULL);
nmtst_assert_connection_verifies_and_normalizable (c1);
nmtst_connection_normalize (c1);
c2 = nm_simple_connection_new_clone (c1);
nmtst_assert_connection_verifies_without_normalization (c2);
nmtst_assert_connection_equals (c1, FALSE, c2, FALSE);
s_ip1 = nm_connection_get_setting_ip4_config (c1);
s_ip2 = nm_connection_get_setting_ip4_config (c2);
nm_setting_ip_config_clear_dns_options (s_ip2, FALSE);
g_object_get (G_OBJECT (s_ip2), NM_SETTING_IP_CONFIG_DNS_OPTIONS, &strv, NULL);
g_assert (!strv);
nmtst_assert_connection_equals (c1, FALSE, c2, FALSE);
nm_setting_ip_config_clear_dns_options (s_ip2, TRUE);
g_object_get (G_OBJECT (s_ip2), NM_SETTING_IP_CONFIG_DNS_OPTIONS, &strv, NULL);
g_assert (strv && !strv[0]);
g_strfreev (strv);
compare = nm_setting_diff ((NMSetting *) s_ip1, (NMSetting *) s_ip2, NM_SETTING_COMPARE_FLAG_EXACT, FALSE, &out_settings);
g_assert (!compare);
g_assert (out_settings);
g_assert (g_hash_table_contains (out_settings, NM_SETTING_IP_CONFIG_DNS_OPTIONS));
g_hash_table_unref (out_settings);
out_settings = NULL;
compare = nm_connection_diff (c1, c2, NM_SETTING_COMPARE_FLAG_EXACT, &out_settings);
g_assert (!compare);
g_assert (out_settings);
g_hash_table_unref (out_settings);
out_settings = NULL;
}
/*****************************************************************************/
static void
test_setting_user_data (void)
{
gs_unref_object NMSettingUser *s_user = NULL;
s_user = NM_SETTING_USER (nm_setting_user_new ());
}
/*****************************************************************************/
typedef union {
struct sockaddr sa;
struct sockaddr_in in;
struct sockaddr_in6 in6;
} SockAddrUnion;
static void
_sock_addr_endpoint (const char *endpoint,
const char *host,
gint32 port)
{
nm_auto_unref_sockaddrendpoint NMSockAddrEndpoint *ep = NULL;
const char *s_endpoint;
const char *s_host;
gint32 s_port;
SockAddrUnion sockaddr = { };
g_assert (endpoint);
g_assert ((!host) == (port == -1));
g_assert (port >= -1 && port <= G_MAXUINT16);
ep = nm_sock_addr_endpoint_new (endpoint);
g_assert (ep);
s_endpoint = nm_sock_addr_endpoint_get_endpoint (ep);
s_host = nm_sock_addr_endpoint_get_host (ep);
s_port = nm_sock_addr_endpoint_get_port (ep);
g_assert_cmpstr (endpoint, ==, s_endpoint);
g_assert_cmpstr (host, ==, s_host);
g_assert_cmpint (port, ==, s_port);
g_assert (!nm_sock_addr_endpoint_get_fixed_sockaddr (ep, &sockaddr));
if (endpoint[0] != ' ') {
gs_free char *endpoint2 = NULL;
/* also test with a leading space */
endpoint2 = g_strdup_printf (" %s", endpoint);
_sock_addr_endpoint (endpoint2, host, port);
}
if (endpoint[0] && endpoint[strlen (endpoint) - 1] != ' ') {
gs_free char *endpoint2 = NULL;
/* also test with a trailing space */
endpoint2 = g_strdup_printf ("%s ", endpoint);
_sock_addr_endpoint (endpoint2, host, port);
}
}
static void
_sock_addr_endpoint_fixed (const char *endpoint,
const char *host,
guint16 port,
guint scope_id)
{
nm_auto_unref_sockaddrendpoint NMSockAddrEndpoint *ep = NULL;
const char *s_endpoint;
const char *s_host;
gint32 s_port;
int addr_family;
NMIPAddr addrbin;
SockAddrUnion sockaddr = { };
g_assert (endpoint);
g_assert (host);
g_assert (port > 0);
if (!nm_utils_parse_inaddr_bin (AF_UNSPEC, host, &addr_family, &addrbin))
g_assert_not_reached ();
ep = nm_sock_addr_endpoint_new (endpoint);
g_assert (ep);
s_endpoint = nm_sock_addr_endpoint_get_endpoint (ep);
s_host = nm_sock_addr_endpoint_get_host (ep);
s_port = nm_sock_addr_endpoint_get_port (ep);
g_assert_cmpstr (endpoint, ==, s_endpoint);
g_assert_cmpstr (NULL, !=, s_host);
g_assert_cmpint (port, ==, s_port);
if (!nm_sock_addr_endpoint_get_fixed_sockaddr (ep, &sockaddr))
g_assert_not_reached ();
g_assert_cmpint (sockaddr.sa.sa_family, ==, addr_family);
if (addr_family == AF_INET) {
const SockAddrUnion s = {
.in = {
.sin_family = AF_INET,
.sin_addr = addrbin.addr4_struct,
.sin_port = htons (port),
},
};
g_assert_cmpint (sockaddr.in.sin_addr.s_addr, ==, addrbin.addr4);
g_assert_cmpint (sockaddr.in.sin_port, ==, htons (port));
g_assert (memcmp (&s, &sockaddr, sizeof (s.in)) == 0);
} else if (addr_family == AF_INET6) {
const SockAddrUnion s = {
.in6 = {
.sin6_family = AF_INET6,
.sin6_addr = addrbin.addr6,
.sin6_scope_id = scope_id,
.sin6_port = htons (port),
},
};
g_assert (memcmp (&sockaddr.in6.sin6_addr, &addrbin, sizeof (addrbin.addr6)) == 0);
g_assert_cmpint (sockaddr.in6.sin6_port, ==, htons (port));
g_assert_cmpint (sockaddr.in6.sin6_scope_id, ==, scope_id);
g_assert_cmpint (sockaddr.in6.sin6_flowinfo, ==, 0);
g_assert (memcmp (&s, &sockaddr, sizeof (s.in6)) == 0);
} else
g_assert_not_reached ();
}
static void
test_sock_addr_endpoint (void)
{
_sock_addr_endpoint ("", NULL, -1);
_sock_addr_endpoint (":", NULL, -1);
_sock_addr_endpoint ("a", NULL, -1);
_sock_addr_endpoint ("a:", NULL, -1);
_sock_addr_endpoint (":a", NULL, -1);
_sock_addr_endpoint ("[]:a", NULL, -1);
_sock_addr_endpoint ("[]a", NULL, -1);
_sock_addr_endpoint ("[]:", NULL, -1);
_sock_addr_endpoint ("[a]b", NULL, -1);
_sock_addr_endpoint ("[a:b", NULL, -1);
_sock_addr_endpoint ("[a[:b", NULL, -1);
_sock_addr_endpoint ("a:6", "a", 6);
_sock_addr_endpoint ("a:6", "a", 6);
_sock_addr_endpoint ("[a]:6", "a", 6);
_sock_addr_endpoint ("[a]:6", "a", 6);
_sock_addr_endpoint ("[a]:655", "a", 655);
_sock_addr_endpoint ("[ab]:][6", NULL, -1);
_sock_addr_endpoint ("[ab]:]:[6", NULL, -1);
_sock_addr_endpoint ("[a[]:b", NULL, -1);
_sock_addr_endpoint ("[192.169.6.x]:6", "192.169.6.x", 6);
_sock_addr_endpoint ("[192.169.6.x]:0", NULL, -1);
_sock_addr_endpoint ("192.169.6.7:0", NULL, -1);
_sock_addr_endpoint_fixed ("192.169.6.7:6", "192.169.6.7", 6, 0);
_sock_addr_endpoint_fixed ("[192.169.6.7]:6", "192.169.6.7", 6, 0);
_sock_addr_endpoint_fixed ("[a:b::]:6", "a:b::", 6, 0);
_sock_addr_endpoint_fixed ("[a:b::%7]:6", "a:b::", 6, 7);
_sock_addr_endpoint_fixed ("a:b::1%75:6", "a:b::1", 6, 75);
_sock_addr_endpoint_fixed ("a:b::1%0:64", "a:b::1", 64, 0);
}
/*****************************************************************************/
static void
test_hexstr2bin (void)
{
static const HexItem items[] = {
{ "aaBBCCddDD10496a", { 0xaa, 0xbb, 0xcc, 0xdd, 0xdd, 0x10, 0x49, 0x6a }, 8 },
{ "aa:bb:cc:dd:10:49:6a", { 0xaa, 0xbb, 0xcc, 0xdd, 0x10, 0x49, 0x6a }, 7 },
{ "0xccddeeff", { 0xcc, 0xdd, 0xee, 0xff }, 4 },
{ "1:2:66:77:80", { 0x01, 0x02, 0x66, 0x77, 0x80 }, 5 },
{ "e", { 0x0e }, 1 },
{ "ef", { 0xef }, 1 },
{ "efa" },
{ "efad", { 0xef, 0xad }, 2 },
{ "ef:a", { 0xef, 0x0a }, 2 },
{ "aabb1199:" },
{ ":aabb1199" },
{ "aabb$$dd" },
{ "aab:ccc:ddd" },
{ "aab::ccc:ddd" },
};
guint i;
for (i = 0; i < G_N_ELEMENTS (items); i++) {
gs_unref_bytes GBytes *b = NULL;
b = nm_utils_hexstr2bin (items[i].str);
2018-08-22 20:49:43 +02:00
if (items[i].expected_len)
g_assert (b);
2018-08-22 20:49:43 +02:00
else
g_assert (!b);
g_assert (nm_utils_gbytes_equal_mem (b, items[i].expected, items[i].expected_len));
}
}
/*****************************************************************************/
static void
_do_strquote (const char *str, gsize buf_len, const char *expected)
{
char canary = (char) nmtst_get_rand_uint32 ();
gs_free char *buf_full = g_malloc (buf_len + 2);
char *buf = &buf_full[1];
const char *b;
buf[-1] = canary;
buf[buf_len] = canary;
if (buf_len == 0) {
b = nm_strquote (NULL, 0, str);
g_assert (b == NULL);
g_assert (expected == NULL);
b = nm_strquote (buf, 0, str);
g_assert (b == buf);
} else {
b = nm_strquote (buf, buf_len, str);
g_assert (b == buf);
g_assert (strlen (b) < buf_len);
g_assert_cmpstr (expected, ==, b);
}
g_assert (buf[-1] == canary);
g_assert (buf[buf_len] == canary);
}
static void
test_nm_strquote (void)
{
_do_strquote (NULL, 0, NULL);
_do_strquote ("", 0, NULL);
_do_strquote ("a", 0, NULL);
_do_strquote ("ab", 0, NULL);
_do_strquote (NULL, 1, "");
_do_strquote (NULL, 2, "(");
_do_strquote (NULL, 3, "(n");
_do_strquote (NULL, 4, "(nu");
_do_strquote (NULL, 5, "(nul");
_do_strquote (NULL, 6, "(null");
_do_strquote (NULL, 7, "(null)");
_do_strquote (NULL, 8, "(null)");
_do_strquote (NULL, 100, "(null)");
_do_strquote ("", 1, "");
_do_strquote ("", 2, "^");
_do_strquote ("", 3, "\"\"");
_do_strquote ("", 4, "\"\"");
_do_strquote ("", 5, "\"\"");
_do_strquote ("", 100, "\"\"");
_do_strquote ("a", 1, "");
_do_strquote ("a", 2, "^");
_do_strquote ("a", 3, "\"^");
_do_strquote ("a", 4, "\"a\"");
_do_strquote ("a", 5, "\"a\"");
_do_strquote ("a", 6, "\"a\"");
_do_strquote ("a", 100, "\"a\"");
_do_strquote ("ab", 1, "");
_do_strquote ("ab", 2, "^");
_do_strquote ("ab", 3, "\"^");
_do_strquote ("ab", 4, "\"a^");
_do_strquote ("ab", 5, "\"ab\"");
_do_strquote ("ab", 6, "\"ab\"");
_do_strquote ("ab", 7, "\"ab\"");
_do_strquote ("ab", 100, "\"ab\"");
_do_strquote ("abc", 1, "");
_do_strquote ("abc", 2, "^");
_do_strquote ("abc", 3, "\"^");
_do_strquote ("abc", 4, "\"a^");
_do_strquote ("abc", 5, "\"ab^");
_do_strquote ("abc", 6, "\"abc\"");
_do_strquote ("abc", 7, "\"abc\"");
_do_strquote ("abc", 100, "\"abc\"");
}
/*****************************************************************************/
#define UUID_NS_ZERO "00000000-0000-0000-0000-000000000000"
#define UUID_NS_DNS "6ba7b810-9dad-11d1-80b4-00c04fd430c8"
#define UUID_NS_URL "6ba7b811-9dad-11d1-80b4-00c04fd430c8"
#define UUID_NS_OID "6ba7b812-9dad-11d1-80b4-00c04fd430c8"
#define UUID_NS_X500 "6ba7b814-9dad-11d1-80b4-00c04fd430c8"
static const NMUuid *
_uuid (const char *str)
{
static NMUuid u;
g_assert (str);
g_assert (_nm_utils_uuid_parse (str, &u));
return &u;
}
static void
_test_uuid (int uuid_type, const char *expected_uuid, const char *str, gssize slen, gpointer type_args)
{
gs_free char *uuid_test = NULL;
uuid_test = nm_utils_uuid_generate_from_string (str, slen, uuid_type, type_args);
g_assert (uuid_test);
g_assert (nm_utils_is_uuid (uuid_test));
if (!nm_streq (uuid_test, expected_uuid)) {
g_error ("UUID test failed: type=%d; text=%s, len=%lld, ns=%s, uuid=%s, expected=%s",
uuid_type,
str,
(long long) slen,
NM_IN_SET (uuid_type, NM_UTILS_UUID_TYPE_VERSION3,
NM_UTILS_UUID_TYPE_VERSION5)
? (((const char *) type_args) ?: "(all-zero)")
: (type_args ? "(unknown)" : "(null)"),
uuid_test,
expected_uuid);
}
if (slen < 0) {
/* also test that passing slen==-1 yields the same result as passing strlen(str). */
_test_uuid (uuid_type, expected_uuid, str, strlen (str), type_args);
} else if (str && slen == 0) {
/* also test if we accept NULL for slen==0 */
_test_uuid (uuid_type, expected_uuid, NULL, 0, type_args);
}
if ( NM_IN_SET (uuid_type, NM_UTILS_UUID_TYPE_VERSION3,
NM_UTILS_UUID_TYPE_VERSION5)
&& !type_args) {
/* For version3 and version5, a missing @type_args is equal to UUID_NS_ZERO */
_test_uuid (uuid_type, expected_uuid, str, slen, UUID_NS_ZERO);
}
}
typedef struct {
const char *uuid3;
const char *uuid5;
} ExpectedUuids;
static void
test_nm_utils_uuid_generate_from_string (void)
{
const ExpectedUuids zero_uuids[] = {
{ .uuid3 = "19826852-5007-3022-a72a-212f66e9fac3", .uuid5 = "b6c54489-38a0-5f50-a60a-fd8d76219cae", },
{ .uuid3 = "9153af2e-fc8e-34f3-9e8b-81f73b33d0cb", .uuid5 = "11116e73-1c03-5de6-9130-5f9925ae8ab4", },
{ .uuid3 = "2f06a3ae-d78d-30d7-b898-088a0e0b76f6", .uuid5 = "1087ebe8-1ef8-5d97-8873-735b4949004d", },
{ .uuid3 = "aca948e0-1468-3a51-9f2e-c688a484efd7", .uuid5 = "7e57d004-2b97-5e7a-b45f-5387367791cd", },
{ .uuid3 = "b74e537a-53e8-3808-9abd-58546a6542bd", .uuid5 = "1dd80df1-492c-5dc5-aec2-6bf0e104f923", },
{ .uuid3 = "1b00958a-7d76-3d08-8aba-c66c5828658c", .uuid5 = "f797f61e-a392-5acf-af25-b46057f1c8e8", },
{ .uuid3 = "7ba18f7d-c9cf-3b48-a89e-ad79243135cc", .uuid5 = "e02c9780-2fc5-5d57-b92f-4cc3a64bff16", },
{ .uuid3 = "9baf0978-1a60-35c5-9e9b-bec8d259fd4e", .uuid5 = "94167980-f909-527e-a4af-bc3155f586d3", },
{ .uuid3 = "588668c0-7631-39c7-9976-c7d414adf7ba", .uuid5 = "9e3eefda-b56e-56bd-8a3a-0b8009d4a536", },
{ .uuid3 = "8edb3613-9612-3b32-9dd7-0a01aa8ed453", .uuid5 = "9b75648e-d38c-54e8-adee-1fb295a079c9", },
{ .uuid3 = "f3b34394-63a5-3773-9014-1f8a50d765b8", .uuid5 = "dd56b598-9e74-58c3-b3e8-2c623780b8ed", },
{ .uuid3 = "0572965f-05b8-342b-b225-d5c29d449eee", .uuid5 = "5666449a-fb7e-55b7-ae9f-0552e6513a10", },
{ .uuid3 = "6f7177c3-77b0-3f42-82a8-7031e25fcccf", .uuid5 = "10b38db9-82fc-528e-9ddb-1f09b7dbf907", },
{ .uuid3 = "d1e0f845-bc1b-368c-b8c8-49ab0b9e486b", .uuid5 = "85492596-9468-5845-9c7f-d4ae999cb751", },
{ .uuid3 = "46371ea3-c8a3-34d8-b2cf-2fa90bda4378", .uuid5 = "22b1c0dd-aa5d-54a4-8768-5adfd0d112bd", },
{ .uuid3 = "f1e6b499-9b68-343b-a5c5-ece7acc49a68", .uuid5 = "9cc429f8-200e-52a3-9e3b-ef134afa1e29", },
{ .uuid3 = "9ed06458-c712-31dd-aba5-6cf79879fabe", .uuid5 = "3949f95c-5d76-5ee2-af60-8e2d8fcf649d", },
{ .uuid3 = "4ddd5cd7-bc83-36aa-909c-4e660f57c830", .uuid5 = "0e994a02-069b-58fb-b3a4-d7dc94e90fca", },
{ .uuid3 = "335fa537-0909-395d-a696-6f41827dcbeb", .uuid5 = "17db3a41-de9b-5c6b-904d-833943209b3c", },
{ .uuid3 = "dbd58444-05ad-3edd-adc7-4393ecbcb43c", .uuid5 = "1bd906f2-05f9-5ab5-a39a-4c17a188f886", },
{ .uuid3 = "a1c62d82-d13c-361b-8f4e-ca91bc2f7fc5", .uuid5 = "ce6550fd-95b7-57e4-9aa7-461522666be4", },
{ .uuid3 = "e943d83e-3f82-307f-81ed-b7a7bcd0743e", .uuid5 = "04aa09ee-b420-57ac-8a23-5d99907fb0a1", },
{ .uuid3 = "cabf46dd-9f09-375c-8f6e-f2a8cf114709", .uuid5 = "8ece2c62-0c31-5c55-b7c6-155381e3780e", },
{ .uuid3 = "19beddf3-f2fb-340f-96ac-4f394960b7a7", .uuid5 = "5762a9f9-9a21-59ab-b0d2-2cb90027ef7f", },
{ .uuid3 = "08d835c2-f4ca-394c-ba7f-2494d8b60c6c", .uuid5 = "23c8409d-4b5f-5b6a-b946-41e49bad6c78", },
{ .uuid3 = "3b8c6847-5331-35bf-9cd9-ced50e53cd7c", .uuid5 = "e8e396be-95d5-5569-8edc-e0b64c2b7613", },
{ .uuid3 = "e601f160-484b-3254-8f3b-0a25c7203d8a", .uuid5 = "bc8b3cbc-ad5b-5808-a1b0-e0f7a1ad68a3", },
{ .uuid3 = "e5e492ed-5349-379d-b7de-a370a51e44a3", .uuid5 = "62c5ed3f-9afa-59ad-874f-a9dd8afc69d4", },
{ .uuid3 = "c40111f6-fe97-305e-bfce-7db730c3d2ec", .uuid5 = "66877a72-7243-59ed-b9e3-b5023b6da9c2", },
{ .uuid3 = "21e18ea8-95c2-362b-9ca9-25d6a0ff2dff", .uuid5 = "49a49eee-7e86-5d66-837a-8a8810cb5562", },
{ .uuid3 = "adab623b-1343-307f-80d8-58d005376ad9", .uuid5 = "e4a2a7ed-3bf3-53cf-a2bb-154dbb39a38c", },
{ .uuid3 = "67e9fc7c-dafe-356d-ac1a-a63ce3f44813", .uuid5 = "50cacfc9-f5d2-52dd-897c-a25a0927b816", },
{ .uuid3 = "36cc7f20-126c-3e40-94e7-737ac7486547", .uuid5 = "ca629991-3f2b-5e86-9bb7-37a335f7d809", },
{ .uuid3 = "fe282996-ac5e-3d13-b478-5def30007a8e", .uuid5 = "c1adf8a7-f72a-58ae-82d5-d18807f12e2e", },
{ .uuid3 = "3bfe339c-05ae-3233-a1a5-ebf1ead589db", .uuid5 = "6120c3cd-24e1-5ce4-987b-f8bfee2e4633", },
{ .uuid3 = "d1d90bc7-da4a-3cd7-a7c8-a1a89765d8ee", .uuid5 = "433d6a26-c319-5fcf-9a30-5ec6ad59d109", },
{ .uuid3 = "10b88a02-0102-359b-81e9-7e3b0ff7d25e", .uuid5 = "77d228d9-1b96-59e2-a07e-a8fdd4f62884", },
{ .uuid3 = "7da5e4f2-6df0-3aca-a1b0-b7f8b1340e1d", .uuid5 = "698259bf-a32b-5e00-9ec6-88b12278c4ad", },
{ .uuid3 = "cbe24d98-ca20-3058-86b6-24a6b36ceff0", .uuid5 = "60dbca63-704f-5666-9f64-f4e1a630c4aa", },
{ .uuid3 = "04d84e6a-b793-3993-afbf-bae7cfc42b49", .uuid5 = "79d63ec0-a39d-557d-8299-f4c97acfadc3", },
{ .uuid3 = "fdd157d8-a537-350a-9cc9-1930e8666c63", .uuid5 = "7df7f75e-a146-5a76-828b-bac052db312b", },
{ .uuid3 = "0bea36bb-24a7-3ee6-a98d-116433c14cd4", .uuid5 = "2bcca2e9-2879-53e3-b09d-cbbfd58771b2", },
{ .uuid3 = "52b040a4-1b84-32d2-b758-f82386f7e0f0", .uuid5 = "cb7bdca3-e9f7-50cd-b72e-73cb9ff24f62", },
{ .uuid3 = "0f0a4e26-e034-3021-acf2-4e886af43092", .uuid5 = "8e428e2b-5da3-5368-b760-5ca07ccbd819", },
{ .uuid3 = "819d3cd1-afe5-3e4a-9f0c-945e25d09879", .uuid5 = "f340ef4d-139c-567a-b0fc-7c495336674e", },
{ .uuid3 = "e7df1a3b-c9f8-3e5a-88d6-ba72b2a0f27b", .uuid5 = "7e3f5fd2-3c93-58d6-9f35-6e0192445b11", },
{ .uuid3 = "0854bedf-74ba-3f2b-b823-dc2c90d27c76", .uuid5 = "bc112b6b-c5de-5ee9-b816-808792743a20", },
{ .uuid3 = "a1b8c3ba-f821-32ef-a3fd-b97b3855efa8", .uuid5 = "47f8f82d-9fcd-553c-90c5-3f3cb3ad00ad", },
{ .uuid3 = "9458f819-079b-3033-9430-ba10f576c067", .uuid5 = "bee5c091-5f01-51fa-86bb-e9488fd3b4da", },
{ .uuid3 = "8e1f240a-e386-3e00-866a-6f9da1e3503f", .uuid5 = "8ea92cea-d741-566f-a44a-d51e65b4c5e4", },
};
const ExpectedUuids dns_uuids[] = {
{ .uuid3 = "4385125b-dd1e-3025-880f-3311517cc8d5", .uuid5 = "6af613b6-569c-5c22-9c37-2ed93f31d3af", },
{ .uuid3 = "afd0b036-625a-3aa8-b639-9dc8c8fff0ff", .uuid5 = "b04965e6-a9bb-591f-8f8a-1adcb2c8dc39", },
{ .uuid3 = "9c45c2f1-1761-3daa-ad31-1ff8703ae846", .uuid5 = "4b166dbe-d99d-5091-abdd-95b83330ed3a", },
{ .uuid3 = "15e0ba07-10e4-3d7f-aaff-c00fed873c88", .uuid5 = "98123fde-012f-5ff3-8b50-881449dac91a", },
{ .uuid3 = "bc27b4db-bc0f-34f9-ae8e-4b72f2d51b60", .uuid5 = "6ed955c6-506a-5343-9be4-2c0afae02eef", },
{ .uuid3 = "7586bfed-b8b8-3bb3-9c95-09a4a79dc0f7", .uuid5 = "c8691da2-158a-5ed6-8537-0e6f140801f2", },
{ .uuid3 = "881430b6-8d28-3175-b87d-e81f2f5978c6", .uuid5 = "a6c4fc8f-6950-51de-a9ae-2c519c465071", },
{ .uuid3 = "24075675-98ae-354e-89ca-0126a9ad36e3", .uuid5 = "a9f96b98-dd44-5216-ab0d-dbfc6b262edf", },
{ .uuid3 = "2c269ea4-dbfd-32dd-9bd7-a5c22677d18b", .uuid5 = "e99caacd-6c45-5906-bd9f-b79e62f25963", },
{ .uuid3 = "44eb0948-118f-3f28-87e4-f61c8f889aba", .uuid5 = "e4d80b30-151e-51b5-9f4f-18a3b82718e6", },
{ .uuid3 = "fc72beeb-f790-36ee-a73d-33888c9d8880", .uuid5 = "0159d6c7-973f-5e7a-a9a0-d195d0ea6fe2", },
{ .uuid3 = "1e46afa2-6176-3cd3-9750-3015846723df", .uuid5 = "7fef88f7-411d-5669-b42d-bf5fc7f9b58b", },
{ .uuid3 = "0042b01d-95bd-343f-bd9f-3186bfd63508", .uuid5 = "52524d6e-10dc-5261-aa36-8b2efcbaa5f0", },
{ .uuid3 = "115ff52f-d605-3b4b-98fe-c0ea57f4930c", .uuid5 = "91c274f2-9a0d-5ce6-ac3d-7529f452df21", },
{ .uuid3 = "ed0221e8-ac7d-393b-821d-25183567885b", .uuid5 = "0ff1e264-520d-543a-87dd-181a491e667e", },
{ .uuid3 = "508ef333-85a6-314c-bcf3-17ddc32b2216", .uuid5 = "23986425-d3a5-5e13-8bab-299745777a8d", },
{ .uuid3 = "a4715ee0-524a-37cc-beb2-a0b5030757b7", .uuid5 = "c15b38c9-9a3e-543c-a703-dd742f25b4d5", },
{ .uuid3 = "d1c72756-aaec-3470-a2f2-97415f44d72f", .uuid5 = "db680066-c83d-5ed7-89a4-1d79466ea62d", },
{ .uuid3 = "7aec2f01-586e-3d53-b8f3-6cf7e6b649a4", .uuid5 = "cadb7952-2bba-5609-88d4-8e47ec4e7920", },
{ .uuid3 = "3d234b88-8d6f-319a-91ea-edb6059fc825", .uuid5 = "35140057-a2a4-5adb-a500-46f8ed8b66a9", },
{ .uuid3 = "d2568554-93ec-30c7-9e15-f383be19e5bb", .uuid5 = "66e549b7-01e2-5d07-98d5-430f74d8d3b2", },
{ .uuid3 = "800e59a7-dd0f-3114-8e58-ab7e213895ca", .uuid5 = "292c8e99-2378-55aa-83d8-350e0ac3f1cc", },
{ .uuid3 = "3b7d03f0-e067-3d72-84f4-e410ac36ef57", .uuid5 = "0e3b230a-0509-55d8-96a0-9875f387a2be", },
{ .uuid3 = "8762be68-de95-391a-94a0-c5fd0446e037", .uuid5 = "4c507660-a83b-55c0-9b2b-83eccb07723d", },
{ .uuid3 = "2bd8b4c9-01af-3cd0-aced-94ee6e2004b8", .uuid5 = "a1b9b633-da11-58be-b1a9-5cfa2848f186", },
{ .uuid3 = "a627d6a4-394a-33f5-b68e-22bfb6488d01", .uuid5 = "c2708a8b-120a-56f5-a30d-990048af87cc", },
{ .uuid3 = "6a592510-17d9-3925-b321-4a8d4927f8d0", .uuid5 = "e7263999-68b6-5a23-b530-af25b7efd632", },
{ .uuid3 = "9ee72491-59c4-333c-bb93-fe733a842fdb", .uuid5 = "ce1ae2d5-3454-5952-97ff-36ff935bcfe9", },
{ .uuid3 = "2591c62c-0a9d-3c28-97bc-fa0401556a3c", .uuid5 = "33677b87-bc8d-5ff6-9a25-fe60225e4bf0", },
{ .uuid3 = "7912be1e-4562-373b-92e2-3d6d2123bc8e", .uuid5 = "ed2305ae-e8f9-5387-b860-3d80ae6c02f7", },
{ .uuid3 = "09370cda-89a4-3a48-b592-9c0486e0d5e4", .uuid5 = "604ed872-ae2d-5d91-8e3e-572f3a3aaaa5", },
{ .uuid3 = "de5980d3-a137-373c-850b-ca3e5f100779", .uuid5 = "8f8173d9-2f8d-5636-a693-24d9f79ba651", },
{ .uuid3 = "9441501d-f633-365a-8955-9df443edc762", .uuid5 = "36eb8d4d-b854-51f1-9fdf-3735964225d5", },
{ .uuid3 = "434ada18-13ce-3c08-8b40-a1a1ae030569", .uuid5 = "3493b6ca-f84b-56a9-97cc-c0bd1c46c4c0", },
{ .uuid3 = "a13b6160-bd23-3710-a150-41d800dd30b4", .uuid5 = "f413ea13-fcd9-5b44-9d22-1fa1f7b063a5", },
{ .uuid3 = "73a67c12-c5f0-3288-ad6a-c78aea0917b0", .uuid5 = "f468d924-d23b-56c2-b90f-3d1cf4b45337", },
{ .uuid3 = "a126ee4f-a222-357d-b71b-7d3f226c559f", .uuid5 = "8828c9d6-ed76-5c09-bf64-ba9e9cd90896", },
{ .uuid3 = "48f4f36b-b015-3137-9b6e-351bb175c7f7", .uuid5 = "facb7618-55ca-5c30-9cba-fd567b6c0611", },
{ .uuid3 = "3fe8f6a3-fe4a-3487-89d6-dd06c6ad02e3", .uuid5 = "96f3de0e-6412-5434-b406-67ef3352ab85", },
{ .uuid3 = "d68fa2d4-adc9-3b20-ac77-42585cd1d59f", .uuid5 = "9ebacb89-40ab-52b3-93a2-9054611d8f55", },
{ .uuid3 = "819f86a3-31d5-3e72-a83e-142c3a3e4832", .uuid5 = "681046ff-9129-5ade-b11c-769864e02184", },
{ .uuid3 = "9957b433-ddc8-3113-a3e6-5512cf13dab1", .uuid5 = "c13d0b5d-1ca3-57b6-a23f-8586bca44928", },
{ .uuid3 = "5aab6e0c-b7d3-379c-92e3-2bfbb5572511", .uuid5 = "7c411b5e-9d3f-50b5-9c28-62096e41c4ed", },
{ .uuid3 = "11c8ff30-3a7d-3547-80a7-d61b8abeeda8", .uuid5 = "f825aafe-6696-5121-b263-6b2c408b7f43", },
{ .uuid3 = "98799b9f-1c5e-30b3-930f-e412b862cbe4", .uuid5 = "f2b4caea-61c3-5bed-8ce7-d8b9d16e129e", },
{ .uuid3 = "9bdf2544-31d8-3555-94b0-6a749118a996", .uuid5 = "3593855a-6557-5736-8cab-172c6987f949", },
{ .uuid3 = "ddcfb9b3-e990-3985-9021-546a2711e7e5", .uuid5 = "36392431-d554-5385-b876-7bc6e1cb26b3", },
{ .uuid3 = "190d7a78-1484-3136-80a6-40f28852785c", .uuid5 = "7e645493-0898-5501-8155-e8578b4f5224", },
{ .uuid3 = "6ed693e4-7dc0-3210-856b-a6eb4cc73e13", .uuid5 = "14dc6a81-0491-5683-baaf-7582a61c5798", },
{ .uuid3 = "b6a14b21-e73a-3ce2-9076-a804c434f5c6", .uuid5 = "883e0a9c-e3b3-5f9c-8073-2913cbbb99ec", },
};
char i_str[30];
guint i;
_test_uuid (NM_UTILS_UUID_TYPE_LEGACY, "d41d8cd9-8f00-b204-e980-0998ecf8427e", "", -1, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_LEGACY, "0cc175b9-c0f1-b6a8-31c3-99e269772661", "a", -1, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_LEGACY, "098f6bcd-4621-d373-cade-4e832627b4f6", "test", -1, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_LEGACY, "70350f60-27bc-e371-3f6b-76473084309b", "a\0b", 3, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_LEGACY, "59c0547b-7fe2-1c15-2cce-e328e8bf6742", "/etc/NetworkManager/system-connections/em1", -1, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "4ae71336-e44b-39bf-b9d2-752e234818a5", "", -1, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "0531103a-d8fc-3dd4-b972-d98e4750994e", "a", -1, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "96e17d7a-ac89-38cf-95e1-bf5098da34e1", "test", -1, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "8156568e-4ae6-3f34-a93e-18e2c6cbbf78", "a\0b", 3, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "c87ee674-4ddc-3efe-a74e-dfe25da5d7b3", "", -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "4c104dd0-4821-30d5-9ce3-0e7a1f8b7c0d", "a", -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "45a113ac-c7f2-30b0-90a5-a399ab912716", "test", -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "002a0ada-f547-375a-bab5-896a11d1927e", "a\0b", 3, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "9a75f5f2-195e-31a9-9d07-8c18b5d3b285", "test123", -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "ec794efe-a384-3b11-a0b6-ec8995bc6acc", "x", -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, "a7650b9f-f19f-5300-8a13-91160ea8de2c", "a\0b", 3, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, "4f3f2898-69e3-5a0d-820a-c4e87987dbce", "a", -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, "05b16a01-46c6-56dd-bd6e-c6dfb4a1427a", "x", -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, "c9ed566a-6b79-5d3a-b2b7-96a936b48cf3", "test123", -1, UUID_NS_DNS);
for (i = 0; i < G_N_ELEMENTS (zero_uuids); i++) {
nm_sprintf_buf (i_str, "%u", i),
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, zero_uuids[i].uuid3, i_str, -1, NULL);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, zero_uuids[i].uuid5, i_str, -1, NULL);
}
for (i = 0; i < G_N_ELEMENTS (dns_uuids); i++) {
nm_sprintf_buf (i_str, "%u", i),
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, dns_uuids[i].uuid3, i_str, -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, dns_uuids[i].uuid5, i_str, -1, UUID_NS_DNS);
}
/* examples from cpython unit tests: */
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "6fa459ea-ee8a-3ca4-894e-db77e160355e", "python.org", -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, "886313e1-3b8a-5372-9b90-0c9aee199e5d", "python.org", -1, UUID_NS_DNS);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "9fe8e8c4-aaa8-32a9-a55c-4535a88b748d", "http://python.org/", -1, UUID_NS_URL);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, "4c565f0d-3f5a-5890-b41b-20cf47701c5e", "http://python.org/", -1, UUID_NS_URL);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "dd1a1cef-13d5-368a-ad82-eca71acd4cd1", "1.3.6.1", -1, UUID_NS_OID);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, "1447fa61-5277-5fef-a9b3-fbc6e44f4af3", "1.3.6.1", -1, UUID_NS_OID);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION3, "658d3002-db6b-3040-a1d1-8ddd7d189a4d", "c=ca", -1, UUID_NS_X500);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, "cc957dd1-a972-5349-98cd-874190002798", "c=ca", -1, UUID_NS_X500);
_test_uuid (NM_UTILS_UUID_TYPE_VERSION5, "74738ff5-5367-5958-9aee-98fffdcd1876", "www.example.org", -1, UUID_NS_DNS);
}
/*****************************************************************************/
static void
__test_uuid (const char *expected_uuid, const char *str, gssize slen, char *uuid_test)
{
g_assert (uuid_test);
g_assert (nm_utils_is_uuid (uuid_test));
if (strcmp (uuid_test, expected_uuid)) {
g_error ("UUID test failed (1): text=%s, len=%lld, expected=%s, uuid_test=%s",
str, (long long) slen, expected_uuid, uuid_test);
}
g_free (uuid_test);
uuid_test = nm_utils_uuid_generate_from_string (str, slen, NM_UTILS_UUID_TYPE_VERSION3, NM_UTILS_UUID_NS);
g_assert (uuid_test);
g_assert (nm_utils_is_uuid (uuid_test));
if (strcmp (uuid_test, expected_uuid)) {
g_error ("UUID test failed (2): text=%s; len=%lld, expected=%s, uuid2=%s",
str, (long long) slen, expected_uuid, uuid_test);
}
g_free (uuid_test);
}
#define _test_uuid(expected_uuid, str, strlen, ...) __test_uuid (expected_uuid, str, strlen, _nm_utils_uuid_generate_from_strings(__VA_ARGS__, NULL))
static void
test_nm_utils_uuid_generate_from_strings (void)
{
const NMUuid uuid0 = { };
g_assert_cmpmem (&uuid0, sizeof (uuid0), _uuid ("00000000-0000-0000-0000-000000000000"), 16);
g_assert (nm_utils_uuid_is_null (NULL));
g_assert (nm_utils_uuid_is_null (&uuid0));
g_assert ( nm_utils_uuid_is_null (_uuid ("00000000-0000-0000-0000-000000000000")));
g_assert (!nm_utils_uuid_is_null (_uuid ("10000000-0000-0000-0000-000000000000")));
_test_uuid ("b07c334a-399b-32de-8d50-58e4e08f98e3", "", 0, NULL);
_test_uuid ("b8a426cb-bcb5-30a3-bd8f-6786fea72df9", "\0", 1, "");
_test_uuid ("12a4a982-7aae-39e1-951e-41aeb1250959", "a\0", 2, "a");
_test_uuid ("69e22c7e-f89f-3a43-b239-1cb52ed8db69", "aa\0", 3, "aa");
_test_uuid ("59829fd3-5ad5-3d90-a7b0-4911747e4088", "\0\0", 2, "", "");
_test_uuid ("01ad0e06-6c50-3384-8d86-ddab81421425", "a\0\0", 3, "a", "");
_test_uuid ("e1ed8647-9ed3-3ec8-8c6d-e8204524d71d", "aa\0\0", 4, "aa", "");
_test_uuid ("fb1c7cd6-275c-3489-9382-83b900da8af0", "\0a\0", 3, "", "a");
_test_uuid ("5d79494e-c4ba-31a6-80a2-d6016ccd7e17", "a\0a\0", 4, "a", "a");
_test_uuid ("fd698d86-1b60-3ebe-855f-7aada9950a8d", "aa\0a\0", 5, "aa", "a");
_test_uuid ("8c573b48-0f01-30ba-bb94-c5f59f4fe517", "\0aa\0", 4, "", "aa");
_test_uuid ("2bdd3d46-eb83-3c53-a41b-a724d04b5544", "a\0aa\0", 5, "a", "aa");
_test_uuid ("13d4b780-07c1-3ba7-b449-81c4844ef039", "aa\0aa\0", 6, "aa", "aa");
_test_uuid ("dd265bf7-c05a-3037-9939-b9629858a477", "a\0b\0", 4, "a", "b");
}
/*****************************************************************************/
static void
test_nm_utils_ascii_str_to_int64_check (const char *str, guint base, gint64 min,
gint64 max, gint64 fallback, int exp_errno,
gint64 exp_val)
{
gint64 v;
errno = 1;
v = _nm_utils_ascii_str_to_int64 (str, base, min, max, fallback);
g_assert_cmpint (errno, ==, exp_errno);
g_assert_cmpint (v, ==, exp_val);
}
static void
test_nm_utils_ascii_str_to_int64_do (const char *str, guint base, gint64 min,
gint64 max, gint64 fallback, int exp_errno,
gint64 exp_val)
{
const char *sign = "";
const char *val;
static const char *whitespaces[] = {
"",
" ",
"\r\n\t",
" \r\n\t ",
" \r\n\t \t\r\n\t",
NULL,
};
static const char *nulls[] = {
"",
"0",
"00",
"0000",
"0000000000000000",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
NULL,
};
const char **ws_pre, **ws_post, **null;
guint i;
if (str == NULL || exp_errno != 0) {
test_nm_utils_ascii_str_to_int64_check (str, base, min, max, fallback, exp_errno, exp_val);
return;
}
if (strncmp (str, "-", 1) == 0)
sign = "-";
val = str + strlen (sign);
for (ws_pre = whitespaces; *ws_pre; ws_pre++) {
for (ws_post = whitespaces; *ws_post; ws_post++) {
for (null = nulls; *null; null++) {
for (i = 0; ; i++) {
char *s;
const char *str_base = "";
if (base == 16) {
if (i == 1)
str_base = "0x";
else if (i > 1)
break;
} else if (base == 8) {
if (i == 1)
str_base = "0";
else if (i > 1)
break;
} else if (base == 0) {
if (i > 0)
break;
/* with base==0, a leading zero would be interpreted as octal. Only test without *null */
if ((*null)[0])
break;
} else {
if (i > 0)
break;
}
s = g_strdup_printf ("%s%s%s%s%s%s", *ws_pre, sign, str_base, *null, val, *ws_post);
test_nm_utils_ascii_str_to_int64_check (s, base, min, max, fallback, exp_errno, exp_val);
g_free (s);
}
}
}
}
}
static void
test_nm_utils_ascii_str_to_int64 (void)
{
test_nm_utils_ascii_str_to_int64_do (NULL, 10, 0, 10000, -1, EINVAL, -1);
test_nm_utils_ascii_str_to_int64_do ("", 10, 0, 10000, -1, EINVAL, -1);
test_nm_utils_ascii_str_to_int64_do ("1x", 10, 0, 10000, -1, EINVAL, -1);
test_nm_utils_ascii_str_to_int64_do ("4711", 10, 0, 10000, -1, 0, 4711);
test_nm_utils_ascii_str_to_int64_do ("10000", 10, 0, 10000, -1, 0, 10000);
test_nm_utils_ascii_str_to_int64_do ("10001", 10, 0, 10000, -1, ERANGE, -1);
test_nm_utils_ascii_str_to_int64_do ("FF", 16, 0, 10000, -1, 0, 255);
test_nm_utils_ascii_str_to_int64_do ("FF", 10, 0, 10000, -2, EINVAL, -2);
test_nm_utils_ascii_str_to_int64_do ("9223372036854775807", 10, 0, G_MAXINT64, -2, 0, G_MAXINT64);
test_nm_utils_ascii_str_to_int64_do ("7FFFFFFFFFFFFFFF", 16, 0, G_MAXINT64, -2, 0, G_MAXINT64);
test_nm_utils_ascii_str_to_int64_do ("9223372036854775808", 10, 0, G_MAXINT64, -2, ERANGE, -2);
test_nm_utils_ascii_str_to_int64_do ("-9223372036854775808", 10, G_MININT64, 0, -2, 0, G_MININT64);
test_nm_utils_ascii_str_to_int64_do ("-9223372036854775808", 10, G_MININT64+1, 0, -2, ERANGE, -2);
test_nm_utils_ascii_str_to_int64_do ("-9223372036854775809", 10, G_MININT64, 0, -2, ERANGE, -2);
test_nm_utils_ascii_str_to_int64_do ("1.0", 10, 1, 1, -1, EINVAL, -1);
test_nm_utils_ascii_str_to_int64_do ("1x0", 16, -10, 10, -100, EINVAL, -100);
test_nm_utils_ascii_str_to_int64_do ("0", 16, -10, 10, -100, 0, 0);
test_nm_utils_ascii_str_to_int64_do ("10001111", 2, -1000, 1000, -100000, 0, 0x8F);
test_nm_utils_ascii_str_to_int64_do ("-10001111", 2, -1000, 1000, -100000, 0, -0x8F);
test_nm_utils_ascii_str_to_int64_do ("1111111", 2, G_MININT64, G_MAXINT64, -1, 0, 0x7F);
test_nm_utils_ascii_str_to_int64_do ("111111111111111", 2, G_MININT64, G_MAXINT64, -1, 0, 0x7FFF);
test_nm_utils_ascii_str_to_int64_do ("11111111111111111111111111111111111111111111111", 2, G_MININT64, G_MAXINT64, -1, 0, 0x7FFFFFFFFFFF);
test_nm_utils_ascii_str_to_int64_do ("111111111111111111111111111111111111111111111111111111111111111", 2, G_MININT64, G_MAXINT64, -1, 0, 0x7FFFFFFFFFFFFFFF);
test_nm_utils_ascii_str_to_int64_do ("100000000000000000000000000000000000000000000000000000000000000", 2, G_MININT64, G_MAXINT64, -1, 0, 0x4000000000000000);
test_nm_utils_ascii_str_to_int64_do ("1000000000000000000000000000000000000000000000000000000000000000", 2, G_MININT64, G_MAXINT64, -1, ERANGE, -1);
test_nm_utils_ascii_str_to_int64_do ("-100000000000000000000000000000000000000000000000000000000000000", 2, G_MININT64, G_MAXINT64, -1, 0, -0x4000000000000000);
test_nm_utils_ascii_str_to_int64_do ("111111111111111111111111111111111111111111111111111111111111111", 2, G_MININT64, G_MAXINT64, -1, 0, 0x7FFFFFFFFFFFFFFF);
test_nm_utils_ascii_str_to_int64_do ("-100000000000000000000000000000000000000000000000000000000000000", 2, G_MININT64, G_MAXINT64, -1, 0, -0x4000000000000000);
test_nm_utils_ascii_str_to_int64_do ("0x70", 10, G_MININT64, G_MAXINT64, -1, EINVAL, -1);
test_nm_utils_ascii_str_to_int64_do ("4711", 0, G_MININT64, G_MAXINT64, -1, 0, 4711);
test_nm_utils_ascii_str_to_int64_do ("04711", 0, G_MININT64, G_MAXINT64, -1, 0, 04711);
test_nm_utils_ascii_str_to_int64_do ("0x4711", 0, G_MININT64, G_MAXINT64, -1, 0, 0x4711);
test_nm_utils_ascii_str_to_int64_do ("080", 0, G_MININT64, G_MAXINT64, -1, EINVAL, -1);
test_nm_utils_ascii_str_to_int64_do ("070", 0, G_MININT64, G_MAXINT64, -1, 0, 7*8);
test_nm_utils_ascii_str_to_int64_do ("0x70", 0, G_MININT64, G_MAXINT64, -1, 0, 0x70);
g_assert_cmpint (21, ==, _nm_utils_ascii_str_to_int64 ("025", 0, 0, 1000, -1));
g_assert_cmpint (21, ==, _nm_utils_ascii_str_to_int64 ("0025", 0, 0, 1000, -1));
g_assert_cmpint (25, ==, _nm_utils_ascii_str_to_int64 ("025", 10, 0, 1000, -1));
g_assert_cmpint (25, ==, _nm_utils_ascii_str_to_int64 ("0025", 10, 0, 1000, -1));
}
/*****************************************************************************/
static void
test_nm_utils_strstrdictkey (void)
{
#define _VALUES_STATIC(_v1, _v2) { .v1 = _v1, .v2 = _v2, .v_static = _nm_utils_strstrdictkey_static (_v1, _v2), }
const struct {
const char *v1;
const char *v2;
NMUtilsStrStrDictKey *v_static;
} *val1, *val2, values[] = {
{ NULL, NULL },
{ "", NULL },
{ NULL, "" },
{ "a", NULL },
{ NULL, "a" },
_VALUES_STATIC ("", ""),
_VALUES_STATIC ("a", ""),
_VALUES_STATIC ("", "a"),
_VALUES_STATIC ("a", "b"),
};
guint i, j;
for (i = 0; i < G_N_ELEMENTS (values); i++) {
gs_free NMUtilsStrStrDictKey *key1 = NULL;
val1 = &values[i];
key1 = _nm_utils_strstrdictkey_create (val1->v1, val1->v2);
if (val1->v_static) {
g_assert (_nm_utils_strstrdictkey_equal (key1, val1->v_static));
g_assert (_nm_utils_strstrdictkey_equal (val1->v_static, key1));
g_assert_cmpint (_nm_utils_strstrdictkey_hash (key1), ==, _nm_utils_strstrdictkey_hash (val1->v_static));
}
for (j = 0; j < G_N_ELEMENTS (values); j++) {
gs_free NMUtilsStrStrDictKey *key2 = NULL;
val2 = &values[j];
key2 = _nm_utils_strstrdictkey_create (val2->v1, val2->v2);
if (i != j) {
g_assert (!_nm_utils_strstrdictkey_equal (key1, key2));
g_assert (!_nm_utils_strstrdictkey_equal (key2, key1));
}
}
}
}
/*****************************************************************************/
static guint
_g_strv_length (gconstpointer arr)
{
return arr ? g_strv_length ((char **) arr) : 0;
}
static void
test_nm_ptrarray_len (void)
{
#define _PTRARRAY_cmp(len, arr) \
G_STMT_START { \
g_assert_cmpint (len, ==, NM_PTRARRAY_LEN (arr)); \
g_assert_cmpint (len, ==, _g_strv_length (arr)); \
} G_STMT_END
#define _PTRARRAY_LEN0(T) \
G_STMT_START { \
T **vnull = NULL; \
T *const*vnull1 = NULL; \
T *const*const vnull2 = NULL; \
T *v0[] = { NULL }; \
T *const*v01 = v0; \
T *const*const v02 = v0; \
T **const v03 = v0; \
\
_PTRARRAY_cmp (0, vnull); \
_PTRARRAY_cmp (0, vnull1); \
_PTRARRAY_cmp (0, vnull2); \
_PTRARRAY_cmp (0, v0); \
_PTRARRAY_cmp (0, v01); \
_PTRARRAY_cmp (0, v02); \
_PTRARRAY_cmp (0, v03); \
} G_STMT_END
_PTRARRAY_LEN0 (char);
_PTRARRAY_LEN0 (const char);
_PTRARRAY_LEN0 (int);
_PTRARRAY_LEN0 (const int);
_PTRARRAY_LEN0 (void *);
_PTRARRAY_LEN0 (void);
_PTRARRAY_LEN0 (const void);
#define _PTRARRAY_LENn(T) \
G_STMT_START { \
T x[5] = { 0 }; \
\
T *v1[] = { &x[0], NULL }; \
T *const*v11 = v1; \
T *const*const v12 = v1; \
T **const v13 = v1; \
\
T *v2[] = { &x[0], &x[1], NULL }; \
T *const*v21 = v2; \
T *const*const v22 = v2; \
T **const v23 = v2; \
\
_PTRARRAY_cmp (1, v1); \
_PTRARRAY_cmp (1, v11); \
_PTRARRAY_cmp (1, v12); \
_PTRARRAY_cmp (1, v13); \
\
_PTRARRAY_cmp (2, v2); \
_PTRARRAY_cmp (2, v21); \
_PTRARRAY_cmp (2, v22); \
_PTRARRAY_cmp (2, v23); \
} G_STMT_END
_PTRARRAY_LENn (char);
_PTRARRAY_LENn (const char);
_PTRARRAY_LENn (int);
_PTRARRAY_LENn (const int);
_PTRARRAY_LENn (void *);
}
/*****************************************************************************/
static void
test_nm_utils_dns_option_validate_do (char *option, gboolean ipv6, const NMUtilsDNSOptionDesc *descs,
gboolean exp_result, char *exp_name, gboolean exp_value)
{
char *name;
long value = 0;
gboolean result;
result = _nm_utils_dns_option_validate (option, &name, &value, ipv6, descs);
g_assert (result == exp_result);
g_assert_cmpstr (name, ==, exp_name);
g_assert (value == exp_value);
g_free (name);
}
static const NMUtilsDNSOptionDesc opt_descs[] = {
/* name num ipv6 */
{ "opt1", FALSE, FALSE },
{ "opt2", TRUE, FALSE },
{ "opt3", FALSE, TRUE },
{ "opt4", TRUE, TRUE },
{ NULL, FALSE, FALSE }
};
static void
test_nm_utils_dns_option_validate (void)
{
/* opt ipv6 descs result name value */
test_nm_utils_dns_option_validate_do ("", FALSE, NULL, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do (":", FALSE, NULL, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do (":1", FALSE, NULL, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do (":val", FALSE, NULL, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt", FALSE, NULL, TRUE, "opt", -1);
test_nm_utils_dns_option_validate_do ("opt:", FALSE, NULL, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt:12", FALSE, NULL, TRUE, "opt", 12);
test_nm_utils_dns_option_validate_do ("opt:12 ", FALSE, NULL, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt:val", FALSE, NULL, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt:2val", FALSE, NULL, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt:2:3", FALSE, NULL, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt-6", FALSE, NULL, TRUE, "opt-6", -1);
test_nm_utils_dns_option_validate_do ("opt1", FALSE, opt_descs, TRUE, "opt1", -1);
test_nm_utils_dns_option_validate_do ("opt1", TRUE, opt_descs, TRUE, "opt1", -1);
test_nm_utils_dns_option_validate_do ("opt1:3", FALSE, opt_descs, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt2", FALSE, opt_descs, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt2:5", FALSE, opt_descs, TRUE, "opt2", 5);
test_nm_utils_dns_option_validate_do ("opt3", FALSE, opt_descs, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt3", TRUE, opt_descs, TRUE, "opt3", -1);
test_nm_utils_dns_option_validate_do ("opt4", FALSE, opt_descs, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt4", TRUE, opt_descs, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt4:40", FALSE, opt_descs, FALSE, NULL, -1);
test_nm_utils_dns_option_validate_do ("opt4:40", TRUE, opt_descs, TRUE, "opt4", 40);
}
static void
test_nm_utils_dns_option_find_idx (void)
{
GPtrArray *options;
options = g_ptr_array_new ();
g_ptr_array_add (options, "debug");
g_ptr_array_add (options, "timeout:5");
g_ptr_array_add (options, "edns0");
g_assert_cmpint (_nm_utils_dns_option_find_idx (options, "debug"), ==, 0);
g_assert_cmpint (_nm_utils_dns_option_find_idx (options, "debug:1"), ==, 0);
g_assert_cmpint (_nm_utils_dns_option_find_idx (options, "timeout"), ==, 1);
g_assert_cmpint (_nm_utils_dns_option_find_idx (options, "timeout:5"), ==, 1);
g_assert_cmpint (_nm_utils_dns_option_find_idx (options, "timeout:2"), ==, 1);
g_assert_cmpint (_nm_utils_dns_option_find_idx (options, "edns0"), ==, 2);
g_assert_cmpint (_nm_utils_dns_option_find_idx (options, "rotate"), ==, -1);
g_assert_cmpint (_nm_utils_dns_option_find_idx (options, ""), ==, -1);
g_ptr_array_free (options, TRUE);
}
/*****************************************************************************/
static void
_json_config_check_valid (const char *conf, gboolean expected)
{
gs_free_error GError *error = NULL;
gboolean res;
res = nm_utils_is_json_object (conf, &error);
g_assert_cmpint (res, ==, expected);
g_assert (res || error);
}
static void
test_nm_utils_check_valid_json (void)
{
_json_config_check_valid (NULL, FALSE);
_json_config_check_valid ("", FALSE);
/* Without JSON library everything except empty string is considered valid */
nmtst_json_vt_reset (FALSE);
_json_config_check_valid ("{ }", TRUE);
_json_config_check_valid ("{'%!-a1} ", TRUE);
_json_config_check_valid (" {'%!-a1}", TRUE);
_json_config_check_valid ("{'%!-a1", FALSE);
if (nmtst_json_vt_reset (TRUE)) {
_json_config_check_valid ("{ }", TRUE);
_json_config_check_valid ("{ \"a\" : 1 }", TRUE);
_json_config_check_valid ("{ \"a\" : }", FALSE);
}
}
static void
_team_config_equal_check (const char *conf1,
const char *conf2,
gboolean port_config,
gboolean expected)
{
libnm: rework team handling of JSON config Completely refactor the team/JSON handling in libnm's NMSettingTeam and NMSettingTeamPort. - team handling was added as rh#1398925. The goal is to have a more convenient way to set properties than constructing JSON. This requires libnm to implement the hard task of parsing JSON (and exposing well-understood properties) and generating JSON (based on these "artificial" properties). But not only libnm. In particular nmcli and the D-Bus API must make this "simpler" API accessible. - since NMSettingTeam and NMSettingTeamPort are conceptually the same, add "libnm-core/nm-team-utils.h" and NMTeamSetting that tries to handle the similar code side-by-sdie. The setting classes now just delegate for everything to NMTeamSetting. - Previously, there was a very fuzzy understanding of the provided JSON config. Tighten that up, when setting a JSON config it regenerates/parses all other properties and tries to make the best of it. When modifying any abstraction property, the entire JSON config gets regenerated. In particular, don't try to merge existing JSON config with the new fields. If the user uses the abstraction API, then the entire JSON gets replaced. For example note that nm_setting_team_add_link_watcher() would not be reflected in the JSON config (a bug). That only accidentally worked because client would serializing the changed link watcher to GVariant/D-Bus, then NetworkManager would set it via g_object_set(), which would renerate the JSON, and finally persist it to disk. But as far as libnm is concerned, nm_setting_team_add_link_watcher() would bring the settings instance in an inconsistent state where JSON and the link watcher property disagree. Setting any property must immediately update both the JSON and the abstraction API. - when constucting a team setting from D-Bus, we would previously parse both "config" and abstraction properties. That is wrong. Since our settings plugins only support JSON, all information must be present in the JSON config anyway. So, when "config" is present, only the JSON must be parsed. In the best case, the other information is redudant and contributes nothing. In the worse case, they information differs (which might happen if the client version differs from the server version). As the settings plugin only supports JSON, it's wrong to consider redundant, differing information from D-Bus. - we now only convert string to JSON or back when needed. Previously, setting a property resulted in parsing several JSON multiple times (per property). All operations should now scale well and be reasonably efficient. - also the property-changed signals are now handled correctly. Since NMTeamSetting knows the current state of all attributes, it can emit the exact property changed signals for what changed. - we no longer use libjansson to generate the JSON. JSON is supposed to be a machine readable exchange format, hence a major goal is to be easily handled by applications. While parsing JSON is not so trivial, writing a well-known set of values to JSON is. The advantage is that when you build libnm without libjansson support, then we still can convert the artificial properties to JSON. - Requiring libjansson in libnm is a burden, because most of the time it is not needed (as most users don't create team configurations). With this change we only require it to parse the team settings (no longer to write them). It should be reasonably simple to use a more minimalistic JSON parser that is sufficient for us, so that we can get rid of the libjansson dependency (for libnm). This also avoids the pain that we have due to the symbol collision of libjansson and libjson-glib. https://bugzilla.redhat.com/show_bug.cgi?id=1691619
2019-05-06 12:36:41 +02:00
nm_auto_free_team_setting NMTeamSetting *team_a = NULL;
nm_auto_free_team_setting NMTeamSetting *team_b = NULL;
gboolean is_same;
if (nmtst_get_rand_bool ())
NM_SWAP (conf1, conf2);
libnm: rework team handling of JSON config Completely refactor the team/JSON handling in libnm's NMSettingTeam and NMSettingTeamPort. - team handling was added as rh#1398925. The goal is to have a more convenient way to set properties than constructing JSON. This requires libnm to implement the hard task of parsing JSON (and exposing well-understood properties) and generating JSON (based on these "artificial" properties). But not only libnm. In particular nmcli and the D-Bus API must make this "simpler" API accessible. - since NMSettingTeam and NMSettingTeamPort are conceptually the same, add "libnm-core/nm-team-utils.h" and NMTeamSetting that tries to handle the similar code side-by-sdie. The setting classes now just delegate for everything to NMTeamSetting. - Previously, there was a very fuzzy understanding of the provided JSON config. Tighten that up, when setting a JSON config it regenerates/parses all other properties and tries to make the best of it. When modifying any abstraction property, the entire JSON config gets regenerated. In particular, don't try to merge existing JSON config with the new fields. If the user uses the abstraction API, then the entire JSON gets replaced. For example note that nm_setting_team_add_link_watcher() would not be reflected in the JSON config (a bug). That only accidentally worked because client would serializing the changed link watcher to GVariant/D-Bus, then NetworkManager would set it via g_object_set(), which would renerate the JSON, and finally persist it to disk. But as far as libnm is concerned, nm_setting_team_add_link_watcher() would bring the settings instance in an inconsistent state where JSON and the link watcher property disagree. Setting any property must immediately update both the JSON and the abstraction API. - when constucting a team setting from D-Bus, we would previously parse both "config" and abstraction properties. That is wrong. Since our settings plugins only support JSON, all information must be present in the JSON config anyway. So, when "config" is present, only the JSON must be parsed. In the best case, the other information is redudant and contributes nothing. In the worse case, they information differs (which might happen if the client version differs from the server version). As the settings plugin only supports JSON, it's wrong to consider redundant, differing information from D-Bus. - we now only convert string to JSON or back when needed. Previously, setting a property resulted in parsing several JSON multiple times (per property). All operations should now scale well and be reasonably efficient. - also the property-changed signals are now handled correctly. Since NMTeamSetting knows the current state of all attributes, it can emit the exact property changed signals for what changed. - we no longer use libjansson to generate the JSON. JSON is supposed to be a machine readable exchange format, hence a major goal is to be easily handled by applications. While parsing JSON is not so trivial, writing a well-known set of values to JSON is. The advantage is that when you build libnm without libjansson support, then we still can convert the artificial properties to JSON. - Requiring libjansson in libnm is a burden, because most of the time it is not needed (as most users don't create team configurations). With this change we only require it to parse the team settings (no longer to write them). It should be reasonably simple to use a more minimalistic JSON parser that is sufficient for us, so that we can get rid of the libjansson dependency (for libnm). This also avoids the pain that we have due to the symbol collision of libjansson and libjson-glib. https://bugzilla.redhat.com/show_bug.cgi?id=1691619
2019-05-06 12:36:41 +02:00
if (!nm_streq0 (conf1, conf2)) {
_team_config_equal_check (conf1, conf1, port_config, TRUE);
_team_config_equal_check (conf2, conf2, port_config, TRUE);
}
libnm: rework team handling of JSON config Completely refactor the team/JSON handling in libnm's NMSettingTeam and NMSettingTeamPort. - team handling was added as rh#1398925. The goal is to have a more convenient way to set properties than constructing JSON. This requires libnm to implement the hard task of parsing JSON (and exposing well-understood properties) and generating JSON (based on these "artificial" properties). But not only libnm. In particular nmcli and the D-Bus API must make this "simpler" API accessible. - since NMSettingTeam and NMSettingTeamPort are conceptually the same, add "libnm-core/nm-team-utils.h" and NMTeamSetting that tries to handle the similar code side-by-sdie. The setting classes now just delegate for everything to NMTeamSetting. - Previously, there was a very fuzzy understanding of the provided JSON config. Tighten that up, when setting a JSON config it regenerates/parses all other properties and tries to make the best of it. When modifying any abstraction property, the entire JSON config gets regenerated. In particular, don't try to merge existing JSON config with the new fields. If the user uses the abstraction API, then the entire JSON gets replaced. For example note that nm_setting_team_add_link_watcher() would not be reflected in the JSON config (a bug). That only accidentally worked because client would serializing the changed link watcher to GVariant/D-Bus, then NetworkManager would set it via g_object_set(), which would renerate the JSON, and finally persist it to disk. But as far as libnm is concerned, nm_setting_team_add_link_watcher() would bring the settings instance in an inconsistent state where JSON and the link watcher property disagree. Setting any property must immediately update both the JSON and the abstraction API. - when constucting a team setting from D-Bus, we would previously parse both "config" and abstraction properties. That is wrong. Since our settings plugins only support JSON, all information must be present in the JSON config anyway. So, when "config" is present, only the JSON must be parsed. In the best case, the other information is redudant and contributes nothing. In the worse case, they information differs (which might happen if the client version differs from the server version). As the settings plugin only supports JSON, it's wrong to consider redundant, differing information from D-Bus. - we now only convert string to JSON or back when needed. Previously, setting a property resulted in parsing several JSON multiple times (per property). All operations should now scale well and be reasonably efficient. - also the property-changed signals are now handled correctly. Since NMTeamSetting knows the current state of all attributes, it can emit the exact property changed signals for what changed. - we no longer use libjansson to generate the JSON. JSON is supposed to be a machine readable exchange format, hence a major goal is to be easily handled by applications. While parsing JSON is not so trivial, writing a well-known set of values to JSON is. The advantage is that when you build libnm without libjansson support, then we still can convert the artificial properties to JSON. - Requiring libjansson in libnm is a burden, because most of the time it is not needed (as most users don't create team configurations). With this change we only require it to parse the team settings (no longer to write them). It should be reasonably simple to use a more minimalistic JSON parser that is sufficient for us, so that we can get rid of the libjansson dependency (for libnm). This also avoids the pain that we have due to the symbol collision of libjansson and libjson-glib. https://bugzilla.redhat.com/show_bug.cgi?id=1691619
2019-05-06 12:36:41 +02:00
team_a = nm_team_setting_new (port_config, conf1);
team_b = nm_team_setting_new (port_config, conf2);
is_same = (nm_team_setting_cmp (team_a, team_b, TRUE) == 0);
g_assert_cmpint (is_same, ==, expected);
if (nm_streq0 (conf1, conf2)) {
g_assert_cmpint (nm_team_setting_cmp (team_a, team_b, FALSE), ==, 0);
g_assert (expected);
} else
g_assert_cmpint (nm_team_setting_cmp (team_a, team_b, FALSE), !=, 0);
}
static void
test_nm_utils_team_config_equal (void)
{
int with_json_vt;
for (with_json_vt = 0; with_json_vt < 2; with_json_vt++) {
const NMJsonVt *vt;
vt = nmtst_json_vt_reset (!!with_json_vt);
_team_config_equal_check ("",
"",
TRUE,
TRUE);
_team_config_equal_check ("",
" ",
TRUE,
TRUE);
_team_config_equal_check ("{}",
"{ }",
TRUE,
TRUE);
_team_config_equal_check ("{}",
"{",
TRUE,
TRUE);
_team_config_equal_check ("{ \"a\": 1 }",
"{ \"a\": 1 }",
TRUE,
TRUE);
_team_config_equal_check ("{ \"a\": 1 }",
"{ \"a\": 1 }",
TRUE,
TRUE);
/* team config */
_team_config_equal_check ("{ }",
"{ \"runner\" : { \"name\" : \"random\"} }",
FALSE,
!vt);
_team_config_equal_check ("{ \"runner\" : { \"name\" : \"roundrobin\"} }",
"{ \"runner\" : { \"name\" : \"random\"} }",
FALSE,
!vt);
_team_config_equal_check ("{ \"runner\" : { \"name\" : \"random\"} }",
"{ \"runner\" : { \"name\" : \"random\"} }",
FALSE,
TRUE);
_team_config_equal_check ("{ \"runner\" : { \"name\" : \"loadbalance\"} }",
"{ \"runner\" : { \"name\" : \"loadbalance\"} }",
FALSE,
TRUE);
_team_config_equal_check ("{ \"runner\" : { \"name\" : \"random\"}, \"ports\" : { \"eth0\" : {} } }",
"{ \"runner\" : { \"name\" : \"random\"}, \"ports\" : { \"eth1\" : {} } }",
FALSE,
TRUE);
_team_config_equal_check ("{ \"runner\" : { \"name\" : \"lacp\"} }",
"{ \"runner\" : { \"name\" : \"lacp\", \"tx_hash\" : [ \"eth\", \"ipv4\", \"ipv6\" ] } }",
FALSE,
!vt);
_team_config_equal_check ("{ \"runner\" : { \"name\" : \"roundrobin\"} }",
"{ \"runner\" : { \"name\" : \"roundrobin\", \"tx_hash\" : [ \"eth\", \"ipv4\", \"ipv6\" ] } }",
FALSE,
!vt);
_team_config_equal_check ("{ \"runner\" : { \"name\" : \"lacp\"} }",
"{ \"runner\" : { \"name\" : \"lacp\", \"tx_hash\" : [ \"eth\" ] } }",
FALSE,
!vt);
/* team port config */
_team_config_equal_check ("{ }",
"{ \"link_watch\" : { \"name\" : \"ethtool\"} }",
TRUE,
!vt);
_team_config_equal_check ("{ }",
"{ \"link_watch\" : { \"name\" : \"arp_ping\"} }",
TRUE,
TRUE);
_team_config_equal_check ("{ \"link_watch\" : { \"name\" : \"ethtool\"} }",
"{ \"link_watch\" : { \"name\" : \"arp_ping\"} }",
TRUE,
!vt);
_team_config_equal_check ("{ \"link_watch\" : { \"name\" : \"arp_ping\"} }",
"{ \"link_watch\" : { \"name\" : \"arp_ping\"} }",
TRUE,
TRUE);
_team_config_equal_check ("{ \"link_watch\" : { \"name\" : \"arp_ping\"}, \"ports\" : { \"eth0\" : {} } }",
"{ \"link_watch\" : { \"name\" : \"arp_ping\"}, \"ports\" : { \"eth1\" : {} } }",
TRUE,
TRUE);
}
nmtst_json_vt_reset (TRUE);
}
/*****************************************************************************/
enum TEST_IS_POWER_OF_TWP_ENUM_SIGNED {
_DUMMY_1 = -1,
};
enum TEST_IS_POWER_OF_TWP_ENUM_UNSIGNED {
_DUMMY_2,
};
enum TEST_IS_POWER_OF_TWP_ENUM_SIGNED_64 {
_DUMMY_3 = (1LL << 40),
};
enum TEST_IS_POWER_OF_TWP_ENUM_UNSIGNED_64 {
_DUMMY_4a = -1,
_DUMMY_4b = (1LL << 40),
};
#define test_nm_utils_is_power_of_two_do(type, x, expect) \
G_STMT_START { \
typeof (x) x1 = (x); \
type x2 = (type) x1; \
gboolean val; \
\
val = nm_utils_is_power_of_two (x1); \
g_assert_cmpint (expect, ==, val); \
if (x1 != 0) \
g_assert_cmpint (val, ==, nm_utils_is_power_of_two_or_zero (x1)); \
else { \
g_assert (nm_utils_is_power_of_two_or_zero (x1)); \
g_assert (!val); \
} \
if ( ((typeof (x1)) x2) == x1 \
&& ((typeof (x2)) x1) == x2 \
&& x2 > 0) { \
/* x2 equals @x, and is positive. Compare to @expect */ \
g_assert_cmpint (expect, ==, nm_utils_is_power_of_two (x2)); \
} else if (!(x2 > 0)) { \
/* a non positive value is always FALSE. */ \
g_assert_cmpint (FALSE, ==, nm_utils_is_power_of_two (x2)); \
} \
if (x2) { \
x2 = -x2; \
if (!(x2 > 0)) { \
/* for negative values, we return FALSE. */ \
g_assert_cmpint (FALSE, ==, nm_utils_is_power_of_two (x2)); \
} \
} \
} G_STMT_END
static void
test_nm_utils_is_power_of_two (void)
{
guint64 xyes, xno;
int i, j;
GRand *rand = nmtst_get_rand ();
int numbits;
g_assert (!nm_utils_is_power_of_two (0));
g_assert (nm_utils_is_power_of_two_or_zero (0));
for (i = -1; i < 64; i++) {
/* find a (positive) x which is a power of two. */
if (i == -1)
xyes = 0;
else {
xyes = (((guint64) 1) << i);
g_assert (xyes != 0);
}
xno = xyes;
if (xyes != 0) {
again:
/* Find another @xno, that is not a power of two. Do that,
* by randomly setting bits. */
numbits = g_rand_int_range (rand, 1, 65);
while (xno != ~((guint64) 0) && numbits > 0) {
guint64 v = (((guint64) 1) << g_rand_int_range (rand, 0, 64));
if ((xno | v) != xno) {
xno |= v;
--numbits;
}
}
if (xno == xyes)
goto again;
}
for (j = 0; j < 2; j++) {
gboolean expect = j == 0;
guint64 x = expect ? xyes : xno;
if (expect && xyes == 0)
continue;
/* check if @x is as @expect, when casted to a certain data type. */
test_nm_utils_is_power_of_two_do (gint8, x, expect);
test_nm_utils_is_power_of_two_do (guint8, x, expect);
test_nm_utils_is_power_of_two_do (gint16, x, expect);
test_nm_utils_is_power_of_two_do (guint16, x, expect);
test_nm_utils_is_power_of_two_do (gint32, x, expect);
test_nm_utils_is_power_of_two_do (guint32, x, expect);
test_nm_utils_is_power_of_two_do (gint64, x, expect);
test_nm_utils_is_power_of_two_do (guint64, x, expect);
test_nm_utils_is_power_of_two_do (char, x, expect);
test_nm_utils_is_power_of_two_do (unsigned char, x, expect);
test_nm_utils_is_power_of_two_do (signed char, x, expect);
test_nm_utils_is_power_of_two_do (enum TEST_IS_POWER_OF_TWP_ENUM_SIGNED, x, expect);
test_nm_utils_is_power_of_two_do (enum TEST_IS_POWER_OF_TWP_ENUM_UNSIGNED, x, expect);
test_nm_utils_is_power_of_two_do (enum TEST_IS_POWER_OF_TWP_ENUM_SIGNED_64, x, expect);
test_nm_utils_is_power_of_two_do (enum TEST_IS_POWER_OF_TWP_ENUM_UNSIGNED_64, x, expect);
}
}
}
/*****************************************************************************/
static int
_test_find_binary_search_cmp (gconstpointer a, gconstpointer b, gpointer dummy)
{
int ia, ib;
ia = GPOINTER_TO_INT (a);
ib = GPOINTER_TO_INT (b);
if (ia == ib)
return 0;
if (ia < ib)
return -1;
return 1;
}
static void
_test_find_binary_search_do (const int *array, gsize len)
{
gsize i;
gssize idx, idx_first, idx_last;
gs_free gconstpointer *parray = g_new (gconstpointer, len);
const int NEEDLE = 0;
gconstpointer pneedle = GINT_TO_POINTER (NEEDLE);
gssize expected_result;
for (i = 0; i < len; i++)
parray[i] = GINT_TO_POINTER (array[i]);
expected_result = _nm_utils_ptrarray_find_first (parray, len, pneedle);
idx = nm_utils_ptrarray_find_binary_search (parray, len, pneedle, _test_find_binary_search_cmp, NULL, &idx_first, &idx_last);
if (expected_result >= 0) {
g_assert_cmpint (expected_result, ==, idx);
} else {
gssize idx2 = ~idx;
g_assert_cmpint (idx, <, 0);
g_assert (idx2 >= 0);
g_assert (idx2 <= len);
g_assert (idx2 - 1 < 0 || _test_find_binary_search_cmp (parray[idx2 - 1], pneedle, NULL) < 0);
g_assert (idx2 >= len || _test_find_binary_search_cmp (parray[idx2], pneedle, NULL) > 0);
}
g_assert_cmpint (idx, ==, idx_first);
g_assert_cmpint (idx, ==, idx_last);
for (i = 0; i < len; i++) {
int cmp;
cmp = _test_find_binary_search_cmp (parray[i], pneedle, NULL);
if (cmp == 0) {
g_assert (pneedle == parray[i]);
g_assert (idx >= 0);
g_assert (i == idx);
} else {
g_assert (pneedle != parray[i]);
if (cmp < 0) {
if (idx < 0)
g_assert (i < ~idx);
else
g_assert (i < idx);
} else {
if (idx < 0)
g_assert (i >= ~idx);
else
g_assert (i >= idx);
}
}
}
}
static void
_test_find_binary_search_do_uint32 (const int *int_array, gsize len)
{
gssize idx;
const int OFFSET = 100;
const int NEEDLE = 0 + OFFSET;
gssize expected_result = -1;
guint32 array[30];
g_assert (len <= G_N_ELEMENTS (array));
/* the test data has negative values. Shift them... */
for (idx = 0; idx < len; idx++) {
int v = int_array[idx];
g_assert (v > -OFFSET);
g_assert (v < OFFSET);
g_assert (idx == 0 || v > int_array[idx - 1]);
array[idx] = (guint32) (int_array[idx] + OFFSET);
if (array[idx] == NEEDLE)
expected_result = idx;
}
idx = nm_utils_array_find_binary_search (array,
sizeof (guint32),
len,
&NEEDLE,
nm_cmp_uint32_p_with_data,
NULL);
if (expected_result >= 0)
g_assert_cmpint (expected_result, ==, idx);
else {
gssize idx2 = ~idx;
g_assert_cmpint (idx, <, 0);
g_assert (idx2 >= 0);
g_assert (idx2 <= len);
g_assert (idx2 - 1 < 0 || array[idx2 - 1] < NEEDLE);
g_assert (idx2 >= len || array[idx2] > NEEDLE);
}
}
#define test_find_binary_search_do(...) \
G_STMT_START { \
const int _array[] = { __VA_ARGS__ }; \
_test_find_binary_search_do (_array, G_N_ELEMENTS (_array)); \
_test_find_binary_search_do_uint32 (_array, G_N_ELEMENTS (_array)); \
} G_STMT_END
static void
test_nm_utils_ptrarray_find_binary_search (void)
{
test_find_binary_search_do ( 0);
test_find_binary_search_do ( -1, 0);
test_find_binary_search_do ( -2, -1, 0);
test_find_binary_search_do (-3, -2, -1, 0);
test_find_binary_search_do ( 0, 1);
test_find_binary_search_do ( 0, 1, 2);
test_find_binary_search_do ( -1, 0, 1, 2);
test_find_binary_search_do ( -2, -1, 0, 1, 2);
test_find_binary_search_do (-3, -2, -1, 0, 1, 2);
test_find_binary_search_do (-3, -2, -1, 0, 1, 2);
test_find_binary_search_do (-3, -2, -1, 0, 1, 2, 3);
test_find_binary_search_do (-3, -2, -1, 0, 1, 2, 3, 4);
test_find_binary_search_do ( -1);
test_find_binary_search_do ( -2, -1);
test_find_binary_search_do (-3, -2, -1);
test_find_binary_search_do ( 1);
test_find_binary_search_do ( 1, 2);
test_find_binary_search_do ( -1, 1, 2);
test_find_binary_search_do ( -2, -1, 1, 2);
test_find_binary_search_do (-3, -2, -1, 1, 2);
test_find_binary_search_do (-3, -2, -1, 1, 2);
test_find_binary_search_do (-3, -2, -1, 1, 2, 3);
test_find_binary_search_do (-3, -2, -1, 1, 2, 3, 4);
}
/*****************************************************************************/
#define BIN_SEARCH_W_DUPS_LEN 100
#define BIN_SEARCH_W_DUPS_JITTER 10
static int
_test_bin_search2_cmp (gconstpointer pa,
gconstpointer pb,
gpointer user_data)
{
int a = GPOINTER_TO_INT (pa);
int b = GPOINTER_TO_INT (pb);
g_assert (a >= 0 && a <= BIN_SEARCH_W_DUPS_LEN + BIN_SEARCH_W_DUPS_JITTER);
g_assert (b >= 0 && b <= BIN_SEARCH_W_DUPS_LEN + BIN_SEARCH_W_DUPS_JITTER);
NM_CMP_DIRECT (a, b);
return 0;
}
static int
_test_bin_search2_cmp_p (gconstpointer pa,
gconstpointer pb,
gpointer user_data)
{
return _test_bin_search2_cmp (*((gpointer *) pa), *((gpointer *) pb), NULL);
}
static void
test_nm_utils_ptrarray_find_binary_search_with_duplicates (void)
{
gssize idx, idx2, idx_first2, idx_first, idx_last;
int i_test, i_len, i;
gssize j;
gconstpointer arr[BIN_SEARCH_W_DUPS_LEN];
const int N_TEST = 10;
for (i_test = 0; i_test < N_TEST; i_test++) {
for (i_len = 0; i_len < BIN_SEARCH_W_DUPS_LEN; i_len++) {
/* fill with random numbers... surely there are some duplicates
* there... or maybe even there are none... */
for (i = 0; i < i_len; i++)
arr[i] = GINT_TO_POINTER (nmtst_get_rand_uint32 () % (i_len + BIN_SEARCH_W_DUPS_JITTER));
g_qsort_with_data (arr,
i_len,
sizeof (gpointer),
_test_bin_search2_cmp_p,
NULL);
for (i = 0; i < i_len + BIN_SEARCH_W_DUPS_JITTER; i++) {
gconstpointer p = GINT_TO_POINTER (i);
idx = nm_utils_ptrarray_find_binary_search (arr, i_len, p, _test_bin_search2_cmp, NULL, &idx_first, &idx_last);
idx_first2 = _nm_utils_ptrarray_find_first (arr, i_len, p);
idx2 = nm_utils_array_find_binary_search (arr, sizeof (gpointer), i_len, &p, _test_bin_search2_cmp_p, NULL);
g_assert_cmpint (idx, ==, idx2);
if (idx_first2 < 0) {
g_assert_cmpint (idx, <, 0);
g_assert_cmpint (idx, ==, idx_first);
g_assert_cmpint (idx, ==, idx_last);
idx = ~idx;
g_assert_cmpint (idx, >=, 0);
g_assert_cmpint (idx, <=, i_len);
if (i_len == 0)
g_assert_cmpint (idx, ==, 0);
else {
g_assert (idx == i_len || GPOINTER_TO_INT (arr[idx]) > i);
g_assert (idx == 0 || GPOINTER_TO_INT (arr[idx - 1]) < i);
}
} else {
g_assert_cmpint (idx_first, ==, idx_first2);
g_assert_cmpint (idx_first, >=, 0);
g_assert_cmpint (idx_last, <, i_len);
g_assert_cmpint (idx_first, <=, idx_last);
g_assert_cmpint (idx, >=, idx_first);
g_assert_cmpint (idx, <=, idx_last);
for (j = idx_first; j < idx_last; j++)
g_assert (GPOINTER_TO_INT (arr[j]) == i);
g_assert (idx_first == 0 || GPOINTER_TO_INT (arr[idx_first - 1]) < i);
g_assert (idx_last == i_len - 1 || GPOINTER_TO_INT (arr[idx_last + 1]) > i);
}
}
}
}
}
/*****************************************************************************/
static void
_test_nm_utils_enum_to_str_do_full (GType type,
int flags,
const char *exp_str,
const NMUtilsEnumValueInfo *value_infos)
{
gs_free char *str = NULL;
int flags2;
gs_free char *err_token = NULL;
gboolean result;
g_assert (exp_str);
str = _nm_utils_enum_to_str_full (type, flags, ", ", value_infos);
g_assert_cmpstr (str, ==, exp_str);
if (!value_infos) {
gs_free char *str2 = NULL;
str2 = nm_utils_enum_to_str (type, flags);
g_assert_cmpstr (str2, ==, exp_str);
}
result = _nm_utils_enum_from_str_full (type, str, &flags2, &err_token, value_infos);
g_assert (result == TRUE);
g_assert_cmpint (flags2, ==, flags);
g_assert_cmpstr (err_token, ==, NULL);
}
#define _test_nm_utils_enum_to_str_do(...) _test_nm_utils_enum_to_str_do_full (__VA_ARGS__, NULL)
static void
_test_nm_utils_enum_from_str_do_full (GType type,
const char *str,
gboolean exp_result,
int exp_flags,
const char *exp_err_token,
const NMUtilsEnumValueInfo *value_infos)
{
int flags;
gs_free char *err_token = NULL;
gboolean result;
result = _nm_utils_enum_from_str_full (type, str, &flags, &err_token, value_infos);
g_assert (result == exp_result);
g_assert_cmpint (flags, ==, exp_flags);
g_assert_cmpstr (err_token, ==, exp_err_token);
if (!value_infos) {
int flags2;
gs_free char *err_token2 = NULL;
gboolean result2;
result2 = nm_utils_enum_from_str (type, str, &flags2, &err_token2);
g_assert (result2 == exp_result);
g_assert_cmpint (flags2, ==, exp_flags);
g_assert_cmpstr (err_token2, ==, exp_err_token);
}
if (result) {
int flags2;
gs_free char *str2 = NULL;
gs_free char *err_token2 = NULL;
str2 = _nm_utils_enum_to_str_full (type, flags, ", ", value_infos);
g_assert (str2);
result = _nm_utils_enum_from_str_full (type, str2, &flags2, &err_token2, value_infos);
g_assert (result == TRUE);
g_assert_cmpint (flags2, ==, flags);
g_assert_cmpstr (err_token, ==, NULL);
}
}
#define _test_nm_utils_enum_from_str_do(...) _test_nm_utils_enum_from_str_do_full(__VA_ARGS__, NULL)
static void
_test_nm_utils_enum_get_values_do (GType type, int from, int to, const char *exp_str)
{
gs_free const char **strv = NULL;
gs_free char *str = NULL;
g_assert (exp_str);
strv = nm_utils_enum_get_values (type, from, to);
g_assert (strv);
str = g_strjoinv (",", (char **) strv);
g_assert_cmpstr (str, ==, exp_str);
}
static void
test_nm_utils_enum (void)
{
GType bool_enum = nm_test_general_bool_enum_get_type();
GType meta_flags = nm_test_general_meta_flags_get_type();
GType color_flags = nm_test_general_color_flags_get_type();
static const NMUtilsEnumValueInfo color_value_infos[] = {
{
.nick = "nick-4d",
.value = 0x4D,
},
{
.nick = "nick-5",
.value = 5,
},
{
.nick = "nick-red",
.value = NM_TEST_GENERAL_COLOR_FLAGS_RED,
},
{ 0 },
};
_test_nm_utils_enum_to_str_do (bool_enum, NM_TEST_GENERAL_BOOL_ENUM_YES, "yes");
_test_nm_utils_enum_to_str_do (bool_enum, NM_TEST_GENERAL_BOOL_ENUM_UNKNOWN, "unknown");
_test_nm_utils_enum_to_str_do (bool_enum, NM_TEST_GENERAL_BOOL_ENUM_INVALID, "4");
_test_nm_utils_enum_to_str_do (bool_enum, NM_TEST_GENERAL_BOOL_ENUM_67, "67");
_test_nm_utils_enum_to_str_do (bool_enum, NM_TEST_GENERAL_BOOL_ENUM_46, "64");
_test_nm_utils_enum_to_str_do (meta_flags, NM_TEST_GENERAL_META_FLAGS_NONE, "none");
_test_nm_utils_enum_to_str_do (meta_flags, NM_TEST_GENERAL_META_FLAGS_BAZ, "baz");
_test_nm_utils_enum_to_str_do (meta_flags, NM_TEST_GENERAL_META_FLAGS_FOO |
NM_TEST_GENERAL_META_FLAGS_BAR |
NM_TEST_GENERAL_META_FLAGS_BAZ, "foo, bar, baz");
_test_nm_utils_enum_to_str_do (meta_flags, 0xFF, "foo, bar, baz, 0xf8");
_test_nm_utils_enum_to_str_do (meta_flags, NM_TEST_GENERAL_META_FLAGS_0x8, "0x8");
_test_nm_utils_enum_to_str_do (meta_flags, NM_TEST_GENERAL_META_FLAGS_0x4, "0x10");
_test_nm_utils_enum_to_str_do (color_flags, NM_TEST_GENERAL_COLOR_FLAGS_RED, "red");
_test_nm_utils_enum_to_str_do (color_flags, NM_TEST_GENERAL_COLOR_FLAGS_WHITE, "0x1");
_test_nm_utils_enum_to_str_do (color_flags, NM_TEST_GENERAL_COLOR_FLAGS_RED |
NM_TEST_GENERAL_COLOR_FLAGS_GREEN, "red, green");
_test_nm_utils_enum_to_str_do_full (color_flags,
NM_TEST_GENERAL_COLOR_FLAGS_RED
| NM_TEST_GENERAL_COLOR_FLAGS_GREEN,
"nick-red, green",
color_value_infos);
_test_nm_utils_enum_to_str_do_full (color_flags,
0x4D
| NM_TEST_GENERAL_COLOR_FLAGS_RED
| NM_TEST_GENERAL_COLOR_FLAGS_GREEN,
"nick-4d",
color_value_infos);
_test_nm_utils_enum_to_str_do_full (color_flags,
5
| NM_TEST_GENERAL_COLOR_FLAGS_GREEN,
"nick-5, green",
color_value_infos);
_test_nm_utils_enum_from_str_do (bool_enum, "", FALSE, 0, NULL);
_test_nm_utils_enum_from_str_do (bool_enum, " ", FALSE, 0, NULL);
_test_nm_utils_enum_from_str_do (bool_enum, "invalid", FALSE, 0, "invalid");
_test_nm_utils_enum_from_str_do (bool_enum, "yes", TRUE, NM_TEST_GENERAL_BOOL_ENUM_YES, NULL);
_test_nm_utils_enum_from_str_do (bool_enum, "no", TRUE, NM_TEST_GENERAL_BOOL_ENUM_NO, NULL);
_test_nm_utils_enum_from_str_do (bool_enum, "yes,no", FALSE, 0, "yes,no");
_test_nm_utils_enum_from_str_do (meta_flags, "", TRUE, 0, NULL);
_test_nm_utils_enum_from_str_do (meta_flags, " ", TRUE, 0, NULL);
_test_nm_utils_enum_from_str_do (meta_flags, "foo", TRUE, NM_TEST_GENERAL_META_FLAGS_FOO, NULL);
_test_nm_utils_enum_from_str_do (meta_flags, "foo,baz", TRUE, NM_TEST_GENERAL_META_FLAGS_FOO |
NM_TEST_GENERAL_META_FLAGS_BAZ, NULL);
_test_nm_utils_enum_from_str_do (meta_flags, "foo, baz", TRUE, NM_TEST_GENERAL_META_FLAGS_FOO |
NM_TEST_GENERAL_META_FLAGS_BAZ, NULL);
_test_nm_utils_enum_from_str_do (meta_flags, "foo,,bar", TRUE, NM_TEST_GENERAL_META_FLAGS_FOO |
NM_TEST_GENERAL_META_FLAGS_BAR, NULL);
_test_nm_utils_enum_from_str_do (meta_flags, "foo,baz,quux,bar", FALSE, 0, "quux");
_test_nm_utils_enum_from_str_do (meta_flags, "foo,0x6", TRUE, NM_TEST_GENERAL_META_FLAGS_FOO | 0x6, NULL);
_test_nm_utils_enum_from_str_do (meta_flags, "0x30,0x08,foo", TRUE, 0x39, NULL);
_test_nm_utils_enum_from_str_do (color_flags, "green", TRUE, NM_TEST_GENERAL_COLOR_FLAGS_GREEN, NULL);
_test_nm_utils_enum_from_str_do (color_flags, "blue,red", TRUE, NM_TEST_GENERAL_COLOR_FLAGS_BLUE |
NM_TEST_GENERAL_COLOR_FLAGS_RED, NULL);
_test_nm_utils_enum_from_str_do (color_flags, "blue,white", FALSE, 0, "white");
_test_nm_utils_enum_from_str_do_full (color_flags,
"nick-red",
TRUE,
NM_TEST_GENERAL_COLOR_FLAGS_RED,
NULL,
color_value_infos);
_test_nm_utils_enum_from_str_do_full (color_flags,
"0x4D",
TRUE,
0x4D,
NULL,
color_value_infos);
_test_nm_utils_enum_from_str_do_full (color_flags,
"green,nick-4d",
TRUE,
0x4D
| NM_TEST_GENERAL_COLOR_FLAGS_GREEN,
NULL,
color_value_infos);
_test_nm_utils_enum_from_str_do_full (color_flags,
"nick-4d,nick-red,nick-5,green,nick-red",
TRUE,
0x4D
| NM_TEST_GENERAL_COLOR_FLAGS_GREEN,
NULL,
color_value_infos);
_test_nm_utils_enum_get_values_do (bool_enum, 0, G_MAXINT, "no,yes,maybe,unknown,67,64");
_test_nm_utils_enum_get_values_do (bool_enum, NM_TEST_GENERAL_BOOL_ENUM_YES,
NM_TEST_GENERAL_BOOL_ENUM_MAYBE, "yes,maybe");
_test_nm_utils_enum_get_values_do (meta_flags, 0, G_MAXINT, "none,foo,bar,baz,0x8,0x10");
_test_nm_utils_enum_get_values_do (color_flags, 0, G_MAXINT, "blue,red,green");
}
/*****************************************************************************/
static void
_do_test_utils_str_utf8safe_unescape (const char *str, const char *expected, gsize expected_len)
{
gsize l;
const char *s;
gs_free gpointer buf_free_1 = NULL;
gs_free char *str_free_1 = NULL;
s = nm_utils_buf_utf8safe_unescape (str, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE, &l, &buf_free_1);
g_assert_cmpint (expected_len, ==, l);
g_assert_cmpstr (s, ==, expected);
if (str == NULL) {
g_assert (!s);
g_assert (!buf_free_1);
g_assert_cmpint (l, ==, 0);
} else {
g_assert (s);
if (!strchr (str, '\\')) {
g_assert (!buf_free_1);
g_assert (s == str);
g_assert_cmpint (l, ==, strlen (str));
} else {
g_assert (buf_free_1);
g_assert (s == buf_free_1);
g_assert (memcmp (s, expected, expected_len) == 0);
}
}
if ( expected
&& l == strlen (expected)) {
/* there are no embedded NULs. Check that nm_utils_str_utf8safe_unescape() yields the same result. */
s = nm_utils_str_utf8safe_unescape (str, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE, &str_free_1);
g_assert_cmpstr (s, ==, expected);
if (strchr (str, '\\')) {
g_assert (str_free_1 != str);
g_assert (s == str_free_1);
} else
g_assert (s == str);
}
}
#define do_test_utils_str_utf8safe_unescape(str, expected) \
_do_test_utils_str_utf8safe_unescape (""str"", expected, NM_STRLEN (expected))
static void
_do_test_utils_str_utf8safe (const char *str, gsize str_len, const char *expected, NMUtilsStrUtf8SafeFlags flags)
{
const char *str_safe;
const char *buf_safe;
const char *s;
gs_free char *str_free_1 = NULL;
gs_free char *str_free_2 = NULL;
gs_free char *str_free_3 = NULL;
gs_free char *str_free_4 = NULL;
gs_free char *str_free_5 = NULL;
gs_free char *str_free_6 = NULL;
gs_free char *str_free_7 = NULL;
gs_free char *str_free_8 = NULL;
gboolean str_has_nul = FALSE;
#define RND_FLAG ((nmtst_get_rand_bool ()) ? NM_UTILS_STR_UTF8_SAFE_FLAG_NONE : NM_UTILS_STR_UTF8_SAFE_FLAG_SECRET)
buf_safe = nm_utils_buf_utf8safe_escape (str, str_len, flags | RND_FLAG, &str_free_1);
str_safe = nm_utils_str_utf8safe_escape (str, flags | RND_FLAG, &str_free_2);
if (str_len == 0) {
g_assert (buf_safe == NULL);
g_assert (str_free_1 == NULL);
g_assert (str_safe == str);
g_assert (str == NULL || str[0] == '\0');
g_assert (str_free_2 == NULL);
} else if (str_len == strlen (str)) {
g_assert (buf_safe);
g_assert_cmpstr (buf_safe, ==, str_safe);
/* nm_utils_buf_utf8safe_escape() can only return a pointer equal to the input string,
* if and only if str_len is negative. Otherwise, the input str won't be NUL terminated
* and cannot be returned. */
g_assert (buf_safe != str);
g_assert (buf_safe == str_free_1);
} else
str_has_nul = TRUE;
str_free_3 = nm_utils_str_utf8safe_escape_cp (str, flags | RND_FLAG);
g_assert_cmpstr (str_free_3, ==, str_safe);
g_assert ((!str && !str_free_3) || (str != str_free_3));
if (str_len > 0)
_do_test_utils_str_utf8safe_unescape (buf_safe, str, str_len);
if (expected == NULL) {
g_assert (!str_has_nul);
g_assert (str_safe == str);
g_assert (!str_free_2);
if (str) {
g_assert (!strchr (str, '\\'));
g_assert (g_utf8_validate (str, -1, NULL));
}
g_assert (str == nm_utils_str_utf8safe_unescape (str_safe, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE, &str_free_4));
g_assert (!str_free_4);
str_free_5 = nm_utils_str_utf8safe_unescape_cp (str_safe, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
if (str) {
g_assert (str_free_5 != str);
g_assert_cmpstr (str_free_5, ==, str);
} else
g_assert (!str_free_5);
return;
}
if (!str_has_nul) {
g_assert (str);
g_assert (str_safe != str);
g_assert (str_safe == str_free_2);
g_assert ( strchr (str, '\\')
|| !g_utf8_validate (str, -1, NULL)
|| ( NM_FLAGS_HAS (flags, NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_NON_ASCII)
&& NM_STRCHAR_ANY (str, ch, (guchar) ch >= 127))
|| ( NM_FLAGS_HAS (flags, NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_CTRL)
&& NM_STRCHAR_ANY (str, ch, (guchar) ch < ' ')));
g_assert (g_utf8_validate (str_safe, -1, NULL));
str_free_6 = g_strcompress (str_safe);
g_assert_cmpstr (str, ==, str_free_6);
str_free_7 = nm_utils_str_utf8safe_unescape_cp (str_safe, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
g_assert (str_free_7 != str);
g_assert_cmpstr (str_free_7, ==, str);
s = nm_utils_str_utf8safe_unescape (str_safe, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE, &str_free_8);
g_assert (str_free_8 != str);
g_assert (s == str_free_8);
g_assert_cmpstr (str_free_8, ==, str);
g_assert_cmpstr (str_safe, ==, expected);
return;
}
g_assert_cmpstr (buf_safe, ==, expected);
}
#define do_test_utils_str_utf8safe(str, expected, flags) \
_do_test_utils_str_utf8safe (""str"", NM_STRLEN (str), expected, flags)
static void
test_utils_str_utf8safe (void)
{
_do_test_utils_str_utf8safe (NULL, 0, NULL, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("", NULL, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\\", "\\\\", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\\a", "\\\\a", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\314", "\\314", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\314\315x\315\315x", "\\314\\315x\\315\\315x", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\314\315xx", "\\314\\315xx", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\314xx", "\\314xx", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\xa0", "\\240", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\xe2\x91\xa0", NULL, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\xe2\xe2\x91\xa0", "\\342\xe2\x91\xa0", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\xe2\xe2\x91\xa0\xa0", "\\342\xe2\x91\xa0\\240", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("a", NULL, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("ab", NULL, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("ab\314", "ab\\314", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("ab\314adsf", "ab\\314adsf", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("abadsf", NULL, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("abäb", NULL, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("x\xa0", "x\\240", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("Ä\304ab\\äb", "Ä\\304ab\\\\äb", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("Äab\\äb", "Äab\\\\äb", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("ÄÄab\\äb", "ÄÄab\\\\äb", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("㈞abä㈞b", NULL, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("abäb", "ab\\303\\244b", NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_NON_ASCII);
do_test_utils_str_utf8safe ("ab\ab", "ab\\007b", NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_CTRL);
do_test_utils_str_utf8safe ("\0", "\\000", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\0a\0", "\\000a\\000", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\\\0", "\\\\\\000", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\n\0", "\n\\000", NM_UTILS_STR_UTF8_SAFE_FLAG_NONE);
do_test_utils_str_utf8safe ("\n\0", "\\012\\000", NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_CTRL);
do_test_utils_str_utf8safe_unescape ("\n\\0", "\n\0");
do_test_utils_str_utf8safe_unescape ("\n\\01", "\n\01");
do_test_utils_str_utf8safe_unescape ("\n\\012", "\n\012");
do_test_utils_str_utf8safe_unescape ("\n\\.", "\n.");
do_test_utils_str_utf8safe_unescape ("\\n\\.3\\r", "\n.3\r");
}
/*****************************************************************************/
static int
_test_nm_in_set_get (int *call_counter, gboolean allow_called, int value)
{
g_assert (call_counter);
*call_counter += 1;
if (!allow_called)
g_assert_not_reached ();
return value;
}
static void
_test_nm_in_set_assert (int *call_counter, int expected)
{
g_assert (call_counter);
g_assert_cmpint (expected, ==, *call_counter);
*call_counter = 0;
}
static void
test_nm_in_set (void)
{
int call_counter = 0;
#define G(x) _test_nm_in_set_get (&call_counter, TRUE, x)
#define N(x) _test_nm_in_set_get (&call_counter, FALSE, x)
#define _ASSERT(expected, expr) \
G_STMT_START { \
_test_nm_in_set_assert (&call_counter, 0); \
g_assert (expr); \
_test_nm_in_set_assert (&call_counter, (expected)); \
} G_STMT_END
_ASSERT (1, !NM_IN_SET (-1, G( 1)));
_ASSERT (1, NM_IN_SET (-1, G(-1)));
_ASSERT (2, !NM_IN_SET (-1, G( 1), G( 2)));
_ASSERT (1, NM_IN_SET (-1, G(-1), N( 2)));
_ASSERT (2, NM_IN_SET (-1, G( 1), G(-1)));
_ASSERT (1, NM_IN_SET (-1, G(-1), N(-1)));
_ASSERT (3, !NM_IN_SET (-1, G( 1), G( 2), G( 3)));
_ASSERT (1, NM_IN_SET (-1, G(-1), N( 2), N( 3)));
_ASSERT (2, NM_IN_SET (-1, G( 1), G(-1), N( 3)));
_ASSERT (3, NM_IN_SET (-1, G( 1), G( 2), G(-1)));
_ASSERT (2, NM_IN_SET (-1, G( 1), G(-1), N(-1)));
_ASSERT (1, NM_IN_SET (-1, G(-1), N( 2), N(-1)));
_ASSERT (1, NM_IN_SET (-1, G(-1), N(-1), N( 3)));
_ASSERT (1, NM_IN_SET (-1, G(-1), N(-1), N(-1)));
_ASSERT (4, !NM_IN_SET (-1, G( 1), G( 2), G( 3), G( 4)));
_ASSERT (1, NM_IN_SET (-1, G(-1), N( 2), N( 3), N( 4)));
_ASSERT (2, NM_IN_SET (-1, G( 1), G(-1), N( 3), N( 4)));
_ASSERT (3, NM_IN_SET (-1, G( 1), G( 2), G(-1), N( 4)));
_ASSERT (4, NM_IN_SET (-1, G( 1), G( 2), G( 3), G(-1)));
_ASSERT (4, NM_IN_SET (-1, G( 1), G( 2), G( 3), G(-1), G( 5)));
_ASSERT (5, NM_IN_SET (-1, G( 1), G( 2), G( 3), G( 4), G(-1)));
_ASSERT (6, NM_IN_SET (-1, G( 1), G( 2), G( 3), G( 4), G( 5), G( -1)));
_ASSERT (1, !NM_IN_SET_SE (-1, G( 1)));
_ASSERT (1, NM_IN_SET_SE (-1, G(-1)));
_ASSERT (2, !NM_IN_SET_SE (-1, G( 1), G( 2)));
_ASSERT (2, NM_IN_SET_SE (-1, G(-1), G( 2)));
_ASSERT (2, NM_IN_SET_SE (-1, G( 1), G(-1)));
_ASSERT (2, NM_IN_SET_SE (-1, G(-1), G(-1)));
_ASSERT (3, !NM_IN_SET_SE (-1, G( 1), G( 2), G( 3)));
_ASSERT (3, NM_IN_SET_SE (-1, G(-1), G( 2), G( 3)));
_ASSERT (3, NM_IN_SET_SE (-1, G( 1), G(-1), G( 3)));
_ASSERT (3, NM_IN_SET_SE (-1, G( 1), G( 2), G(-1)));
_ASSERT (3, NM_IN_SET_SE (-1, G( 1), G(-1), G(-1)));
_ASSERT (3, NM_IN_SET_SE (-1, G(-1), G( 2), G(-1)));
_ASSERT (3, NM_IN_SET_SE (-1, G(-1), G(-1), G( 3)));
_ASSERT (3, NM_IN_SET_SE (-1, G(-1), G(-1), G(-1)));
_ASSERT (4, !NM_IN_SET_SE (-1, G( 1), G( 2), G( 3), G( 4)));
_ASSERT (4, NM_IN_SET_SE (-1, G(-1), G( 2), G( 3), G( 4)));
_ASSERT (4, NM_IN_SET_SE (-1, G( 1), G(-1), G( 3), G( 4)));
_ASSERT (4, NM_IN_SET_SE (-1, G( 1), G( 2), G(-1), G( 4)));
_ASSERT (4, NM_IN_SET_SE (-1, G( 1), G( 2), G( 3), G(-1)));
_ASSERT (5, NM_IN_SET_SE (-1, G( 1), G( 2), G( 3), G(-1), G( 5)));
_ASSERT (6, NM_IN_SET_SE (-1, G( 1), G( 2), G( 3), G( 4), G( 5), G(-1)));
g_assert (!NM_IN_SET (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16));
#undef G
#undef N
#undef _ASSERT
}
/*****************************************************************************/
static const char *
_test_nm_in_set_getstr (int *call_counter, gboolean allow_called, const char *value)
{
g_assert (call_counter);
*call_counter += 1;
if (!allow_called)
g_assert_not_reached ();
return value;
}
static void
test_nm_in_strset (void)
{
int call_counter = 0;
#define G(x) _test_nm_in_set_getstr (&call_counter, TRUE, x)
#define N(x) _test_nm_in_set_getstr (&call_counter, FALSE, x)
#define _ASSERT(expected, expr) \
G_STMT_START { \
_test_nm_in_set_assert (&call_counter, 0); \
g_assert (expr); \
_test_nm_in_set_assert (&call_counter, (expected)); \
} G_STMT_END
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL)));
_ASSERT (1, !NM_IN_STRSET ("a", G(NULL)));
_ASSERT (1, !NM_IN_STRSET (NULL, G("a")));
_ASSERT (1, NM_IN_STRSET_SE (NULL, G(NULL)));
_ASSERT (1, !NM_IN_STRSET_SE ("a", G(NULL)));
_ASSERT (1, !NM_IN_STRSET_SE (NULL, G("a")));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N(NULL)));
_ASSERT (2, !NM_IN_STRSET ("a", G(NULL), G(NULL)));
_ASSERT (2, NM_IN_STRSET (NULL, G("a"), G(NULL)));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N("a")));
_ASSERT (2, NM_IN_STRSET ("a", G(NULL), G("a")));
_ASSERT (2, !NM_IN_STRSET (NULL, G("a"), G("a")));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N("b")));
_ASSERT (2, !NM_IN_STRSET ("a", G(NULL), G("b")));
_ASSERT (2, !NM_IN_STRSET (NULL, G("a"), G("b")));
_ASSERT (2, NM_IN_STRSET_SE (NULL, G(NULL), G(NULL)));
_ASSERT (2, !NM_IN_STRSET_SE ("a", G(NULL), G(NULL)));
_ASSERT (2, NM_IN_STRSET_SE (NULL, G("a"), G(NULL)));
_ASSERT (2, NM_IN_STRSET_SE (NULL, G(NULL), G("a")));
_ASSERT (2, NM_IN_STRSET_SE ("a", G(NULL), G("a")));
_ASSERT (2, !NM_IN_STRSET_SE (NULL, G("a"), G("a")));
_ASSERT (2, NM_IN_STRSET_SE (NULL, G(NULL), G("b")));
_ASSERT (2, !NM_IN_STRSET_SE ("a", G(NULL), G("b")));
_ASSERT (2, !NM_IN_STRSET_SE (NULL, G("a"), G("b")));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N(NULL), N(NULL)));
_ASSERT (3, !NM_IN_STRSET ("a", G(NULL), G(NULL), G(NULL)));
_ASSERT (2, NM_IN_STRSET (NULL, G("a"), G(NULL), N(NULL)));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N("a"), N(NULL)));
_ASSERT (2, NM_IN_STRSET ("a", G(NULL), G("a"), N(NULL)));
_ASSERT (3, NM_IN_STRSET (NULL, G("a"), G("a"), G(NULL)));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N("b"), N(NULL)));
_ASSERT (3, !NM_IN_STRSET ("a", G(NULL), G("b"), G(NULL)));
_ASSERT (3, NM_IN_STRSET (NULL, G("a"), G("b"), G(NULL)));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N(NULL), N("a")));
_ASSERT (3, NM_IN_STRSET ("a", G(NULL), G(NULL), G("a")));
_ASSERT (2, NM_IN_STRSET (NULL, G("a"), G(NULL), N("a")));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N("a"), N("a")));
_ASSERT (2, NM_IN_STRSET ("a", G(NULL), G("a"), N("a")));
_ASSERT (3, !NM_IN_STRSET (NULL, G("a"), G("a"), G("a")));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N("b"), N("a")));
_ASSERT (3, NM_IN_STRSET ("a", G(NULL), G("b"), G("a")));
_ASSERT (3, !NM_IN_STRSET (NULL, G("a"), G("b"), G("a")));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N(NULL), N("b")));
_ASSERT (3, !NM_IN_STRSET ("a", G(NULL), G(NULL), G("b")));
_ASSERT (2, NM_IN_STRSET (NULL, G("a"), G(NULL), N("b")));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N("a"), N("b")));
_ASSERT (2, NM_IN_STRSET ("a", G(NULL), G("a"), N("b")));
_ASSERT (3, !NM_IN_STRSET (NULL, G("a"), G("a"), G("b")));
_ASSERT (1, NM_IN_STRSET (NULL, G(NULL), N("b"), N("b")));
_ASSERT (3, !NM_IN_STRSET ("a", G(NULL), G("b"), G("b")));
_ASSERT (3, !NM_IN_STRSET (NULL, G("a"), G("b"), G("b")));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G(NULL), G(NULL), G(NULL)));
_ASSERT (3, !NM_IN_STRSET_SE ("a", G(NULL), G(NULL), G(NULL)));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G("a"), G(NULL), G(NULL)));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G(NULL), G("a"), G(NULL)));
_ASSERT (3, NM_IN_STRSET_SE ("a", G(NULL), G("a"), G(NULL)));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G("a"), G("a"), G(NULL)));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G(NULL), G("b"), G(NULL)));
_ASSERT (3, !NM_IN_STRSET_SE ("a", G(NULL), G("b"), G(NULL)));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G("a"), G("b"), G(NULL)));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G(NULL), G(NULL), G("a")));
_ASSERT (3, NM_IN_STRSET_SE ("a", G(NULL), G(NULL), G("a")));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G("a"), G(NULL), G("a")));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G(NULL), G("a"), G("a")));
_ASSERT (3, NM_IN_STRSET_SE ("a", G(NULL), G("a"), G("a")));
_ASSERT (3, !NM_IN_STRSET_SE (NULL, G("a"), G("a"), G("a")));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G(NULL), G("b"), G("a")));
_ASSERT (3, NM_IN_STRSET_SE ("a", G(NULL), G("b"), G("a")));
_ASSERT (3, !NM_IN_STRSET_SE (NULL, G("a"), G("b"), G("a")));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G(NULL), G(NULL), G("b")));
_ASSERT (3, !NM_IN_STRSET_SE ("a", G(NULL), G(NULL), G("b")));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G("a"), G(NULL), G("b")));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G(NULL), G("a"), G("b")));
_ASSERT (3, NM_IN_STRSET_SE ("a", G(NULL), G("a"), G("b")));
_ASSERT (3, !NM_IN_STRSET_SE (NULL, G("a"), G("a"), G("b")));
_ASSERT (3, NM_IN_STRSET_SE (NULL, G(NULL), G("b"), G("b")));
_ASSERT (3, !NM_IN_STRSET_SE ("a", G(NULL), G("b"), G("b")));
_ASSERT (3, !NM_IN_STRSET_SE (NULL, G("a"), G("b"), G("b")));
_ASSERT (3, NM_IN_STRSET ("a", G(NULL), G("b"), G("a"), N("a")));
_ASSERT (4, NM_IN_STRSET ("a", G(NULL), G("b"), G("c"), G("a")));
_ASSERT (4, !NM_IN_STRSET ("a", G(NULL), G("b"), G("c"), G("d")));
_ASSERT (4, NM_IN_STRSET ("a", G(NULL), G("b"), G("c"), G("a"), N("a")));
_ASSERT (5, NM_IN_STRSET ("a", G(NULL), G("b"), G("c"), G("d"), G("a")));
_ASSERT (5, !NM_IN_STRSET ("a", G(NULL), G("b"), G("c"), G("d"), G("e")));
_ASSERT (5, NM_IN_STRSET ("a", G(NULL), G("b"), G("c"), G("d"), G("a"), N("a")));
_ASSERT (6, NM_IN_STRSET ("a", G(NULL), G("b"), G("c"), G("d"), G("e"), G("a")));
_ASSERT (6, !NM_IN_STRSET ("a", G(NULL), G("b"), G("c"), G("d"), G("e"), G("f")));
g_assert (!NM_IN_STRSET (NULL, "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16"));
g_assert (!NM_IN_STRSET ("_", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16"));
g_assert ( NM_IN_STRSET ("10", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16"));
#undef G
#undef N
#undef _ASSERT
}
static void
test_route_attributes_parse (void)
{
GHashTable *ht;
GError *error = NULL;
GVariant *variant;
ht = nm_utils_parse_variant_attributes ("mtu=1400 src=1.2.3.4 cwnd=14",
' ', '=', FALSE,
nm_ip_route_get_variant_attribute_spec (),
&error);
g_assert_no_error (error);
g_assert (ht);
g_hash_table_unref (ht);
ht = nm_utils_parse_variant_attributes ("mtu=1400 src=1.2.3.4 cwnd=14 \\",
' ', '=', FALSE,
nm_ip_route_get_variant_attribute_spec (),
&error);
g_assert_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_FAILED);
g_assert (!ht);
g_clear_error (&error);
ht = nm_utils_parse_variant_attributes ("mtu.1400 src.1\\.2\\.3\\.4 ",
' ', '.', FALSE,
nm_ip_route_get_variant_attribute_spec (),
&error);
g_assert (ht);
g_assert_no_error (error);
variant = g_hash_table_lookup (ht, NM_IP_ROUTE_ATTRIBUTE_MTU);
g_assert (variant);
g_assert (g_variant_is_of_type (variant, G_VARIANT_TYPE_UINT32));
g_assert_cmpuint (g_variant_get_uint32 (variant), ==, 1400);
variant = g_hash_table_lookup (ht, NM_IP_ROUTE_ATTRIBUTE_SRC);
g_assert (variant);
g_assert (g_variant_is_of_type (variant, G_VARIANT_TYPE_STRING));
g_assert_cmpstr (g_variant_get_string (variant, NULL), ==, "1.2.3.4");
g_hash_table_unref (ht);
ht = nm_utils_parse_variant_attributes ("from:fd01\\:\\:42\\/64/initrwnd:21",
'/', ':', FALSE,
nm_ip_route_get_variant_attribute_spec (),
&error);
g_assert (ht);
g_assert_no_error (error);
variant = g_hash_table_lookup (ht, NM_IP_ROUTE_ATTRIBUTE_INITRWND);
g_assert (variant);
g_assert (g_variant_is_of_type (variant, G_VARIANT_TYPE_UINT32));
g_assert_cmpuint (g_variant_get_uint32 (variant), ==, 21);
variant = g_hash_table_lookup (ht, NM_IP_ROUTE_ATTRIBUTE_FROM);
g_assert (variant);
g_assert (g_variant_is_of_type (variant, G_VARIANT_TYPE_STRING));
g_assert_cmpstr (g_variant_get_string (variant, NULL), ==, "fd01::42/64");
g_hash_table_unref (ht);
}
static void
test_route_attributes_format (void)
{
gs_unref_hashtable GHashTable *ht = NULL;
char *str;
ht = g_hash_table_new_full (nm_str_hash, g_str_equal,
NULL, (GDestroyNotify) g_variant_unref);
str = nm_utils_format_variant_attributes (NULL, ' ', '=');
g_assert_cmpstr (str, ==, NULL);
str = nm_utils_format_variant_attributes (ht, ' ', '=');
g_assert_cmpstr (str, ==, NULL);
g_hash_table_insert (ht, NM_IP_ROUTE_ATTRIBUTE_MTU, g_variant_new_uint32 (5000));
g_hash_table_insert (ht, NM_IP_ROUTE_ATTRIBUTE_INITRWND, g_variant_new_uint32 (20));
g_hash_table_insert (ht, NM_IP_ROUTE_ATTRIBUTE_LOCK_MTU, g_variant_new_boolean (TRUE));
g_hash_table_insert (ht, NM_IP_ROUTE_ATTRIBUTE_SRC, g_variant_new_string ("aaaa:bbbb::1"));
str = nm_utils_format_variant_attributes (ht, ' ', '=');
g_assert_cmpstr (str, ==, "initrwnd=20 lock-mtu=true mtu=5000 src=aaaa:bbbb::1");
g_hash_table_remove_all (ht);
g_free (str);
g_hash_table_insert (ht, NM_IP_ROUTE_ATTRIBUTE_WINDOW, g_variant_new_uint32 (30000));
g_hash_table_insert (ht, NM_IP_ROUTE_ATTRIBUTE_INITCWND, g_variant_new_uint32 (21));
g_hash_table_insert (ht, NM_IP_ROUTE_ATTRIBUTE_FROM, g_variant_new_string ("aaaa:bbbb:cccc:dddd::/64"));
str = nm_utils_format_variant_attributes (ht, '/', ':');
g_assert_cmpstr (str, ==, "from:aaaa\\:bbbb\\:cccc\\:dddd\\:\\:\\/64/initcwnd:21/window:30000");
g_hash_table_remove_all (ht);
g_free (str);
}
/*****************************************************************************/
static void
test_variant_attribute_spec (void)
{
const NMVariantAttributeSpec *const *const specs_list[] = {
nm_ip_route_get_variant_attribute_spec (),
};
int i_specs;
for (i_specs = 0; i_specs < G_N_ELEMENTS (specs_list); i_specs++) {
const NMVariantAttributeSpec *const *const specs = specs_list[i_specs];
gsize len;
gsize i;
g_assert (specs);
len = NM_PTRARRAY_LEN (specs);
g_assert_cmpint (len, >, 0u);
_nmtst_variant_attribute_spec_assert_sorted (specs, len);
for (i = 0; i < len; i++)
g_assert (specs[i] == _nm_variant_attribute_spec_find_binary_search (specs, len, specs[i]->name));
g_assert (!_nm_variant_attribute_spec_find_binary_search (specs, len, "bogus"));
}
}
/*****************************************************************************/
2016-09-26 16:59:30 +02:00
static gboolean
do_test_nm_set_out_called (int *call_count)
2016-09-26 16:59:30 +02:00
{
(*call_count)++;
return TRUE;
}
static void
test_nm_set_out (void)
{
gboolean val;
gboolean *p_val;
int call_count;
/* NM_SET_OUT() has an unexpected non-function like behavior
* wrt. side-effects of the value argument. Test it */
p_val = &val;
call_count = 0;
NM_SET_OUT (p_val, do_test_nm_set_out_called (&call_count));
g_assert_cmpint (call_count, ==, 1);
p_val = NULL;
call_count = 0;
NM_SET_OUT (p_val, do_test_nm_set_out_called (&call_count));
g_assert_cmpint (call_count, ==, 0);
/* test that we successfully re-defined _G_BOOLEAN_EXPR() */
#define _T1(a) \
({ \
g_assert (a > 2); \
a; \
})
g_assert (_T1 (3) > 1);
#undef _T1
2016-09-26 16:59:30 +02:00
}
/*****************************************************************************/
2016-09-26 16:59:30 +02:00
static void
test_get_start_time_for_pid (void)
{
guint64 x_start_time;
char x_state;
pid_t x_ppid;
x_start_time = nm_utils_get_start_time_for_pid (getpid (), &x_state, &x_ppid);
g_assert (x_start_time > 0);
g_assert (x_ppid == getppid ());
g_assert (!NM_IN_SET (x_state, '\0', ' '));
}
/*****************************************************************************/
static void
test_nm_va_args_macros (void)
{
#define GET_NARG_1(...) \
NM_NARG (__VA_ARGS__)
g_assert_cmpint ( 0, ==, GET_NARG_1 ());
g_assert_cmpint ( 1, ==, GET_NARG_1 (x));
g_assert_cmpint ( 2, ==, GET_NARG_1 ( , ));
g_assert_cmpint ( 2, ==, GET_NARG_1 ( , x));
g_assert_cmpint ( 2, ==, GET_NARG_1 (x, ));
g_assert_cmpint ( 2, ==, GET_NARG_1 (x, x));
g_assert_cmpint ( 3, ==, GET_NARG_1 ( , , ));
g_assert_cmpint ( 3, ==, GET_NARG_1 ( , , x));
g_assert_cmpint ( 3, ==, GET_NARG_1 ( , x, ));
g_assert_cmpint ( 3, ==, GET_NARG_1 ( , x, x));
g_assert_cmpint ( 3, ==, GET_NARG_1 (x, , ));
g_assert_cmpint ( 3, ==, GET_NARG_1 (x, , x));
g_assert_cmpint ( 3, ==, GET_NARG_1 (x, x, ));
g_assert_cmpint ( 3, ==, GET_NARG_1 (x, x, x));
g_assert_cmpint ( 4, ==, GET_NARG_1 ( , , , ));
g_assert_cmpint ( 4, ==, GET_NARG_1 ( , , , x));
g_assert_cmpint ( 4, ==, GET_NARG_1 ( , , x, ));
g_assert_cmpint ( 4, ==, GET_NARG_1 ( , , x, x));
g_assert_cmpint ( 4, ==, GET_NARG_1 ( , x, , ));
g_assert_cmpint ( 4, ==, GET_NARG_1 ( , x, , x));
g_assert_cmpint ( 4, ==, GET_NARG_1 ( , x, x, ));
g_assert_cmpint ( 4, ==, GET_NARG_1 ( , x, x, x));
g_assert_cmpint ( 4, ==, GET_NARG_1 (x, , , ));
g_assert_cmpint ( 4, ==, GET_NARG_1 (x, , , x));
g_assert_cmpint ( 4, ==, GET_NARG_1 (x, , x, ));
g_assert_cmpint ( 4, ==, GET_NARG_1 (x, , x, x));
g_assert_cmpint ( 4, ==, GET_NARG_1 (x, x, , ));
g_assert_cmpint ( 4, ==, GET_NARG_1 (x, x, , x));
g_assert_cmpint ( 4, ==, GET_NARG_1 (x, x, x, ));
g_assert_cmpint ( 4, ==, GET_NARG_1 (x, x, x, x));
g_assert_cmpint ( 5, ==, GET_NARG_1 (x, x, x, x, x));
g_assert_cmpint ( 6, ==, GET_NARG_1 (x, x, x, x, x, x));
g_assert_cmpint ( 7, ==, GET_NARG_1 (x, x, x, x, x, x, x));
g_assert_cmpint ( 8, ==, GET_NARG_1 (x, x, x, x, x, x, x, x));
g_assert_cmpint ( 9, ==, GET_NARG_1 (x, x, x, x, x, x, x, x, x));
g_assert_cmpint (10, ==, GET_NARG_1 (x, x, x, x, x, x, x, x, x, x));
G_STATIC_ASSERT_EXPR (0 == GET_NARG_1 ());
G_STATIC_ASSERT_EXPR (1 == GET_NARG_1 (x));
G_STATIC_ASSERT_EXPR (2 == GET_NARG_1 (x, x));
}
/*****************************************************************************/
static void
test_ethtool_offload (void)
{
const NMEthtoolData *d;
g_assert_cmpint (nm_ethtool_id_get_by_name ("invalid"), ==, NM_ETHTOOL_ID_UNKNOWN);
g_assert_cmpint (nm_ethtool_id_get_by_name ("feature-rx"), ==, NM_ETHTOOL_ID_FEATURE_RX);
d = nm_ethtool_data_get_by_optname (NM_ETHTOOL_OPTNAME_FEATURE_RXHASH);
g_assert (d);
g_assert_cmpint (d->id, ==, NM_ETHTOOL_ID_FEATURE_RXHASH);
g_assert_cmpstr (d->optname, ==, NM_ETHTOOL_OPTNAME_FEATURE_RXHASH);
}
/*****************************************************************************/
shared: add nm_utils_g_main_context_create_integrate_source() for integrating a GMainContext in another We will rework NMClient entirely. Then, the synchronous initialization will also use the asynchronous code paths. The difference will be that with synchronous initialization, all D-Bus interaction will be done with an internal GMainContext as current thread default, and that internal context will run until initialization completes. Note that even after initialization completes, it cannot be swapped back to the user's (outer) GMainContext. That is because contexts are essentially the queue for our D-Bus events, and we cannot swap from one queue to the other in a race free manner (or a full resync). In other words, the two contexts are not in sync, so after using the internal context NMClient needs to stick to that (at least, until the name owner gets lost, which gives an opportunity to resync and switch back to the user's main context). We thus need to hook the internal (inner) GMainContext with the user's (outer) context, so when the user iterates the outer context, events on the inner context get dispatched. Add nm_utils_g_main_context_create_integrate_source() to create such a GSource for integrating two contexts. Note that the use-case here is limited: the integrated, inner main context must not be explicitly iterated except from being dispatched by the integrating source. Otherwise, you'd get recursive runs, possible deadlocks and general ugliness. NMClient must show restrain how to use the inner context while it is integrated.
2019-11-02 16:55:43 +01:00
typedef struct {
GMainLoop *loop1;
GMainContext *c2;
GSource *extra_sources[2];
bool got_signal[5];
int fd_2;
} IntegData;
static gboolean
_test_integrate_cb_handle (IntegData *d, int signal)
{
int i;
g_assert (d);
g_assert (signal >= 0);
g_assert (signal < G_N_ELEMENTS (d->got_signal));
g_assert (!d->got_signal[signal]);
d->got_signal[signal] = TRUE;
for (i = 0; i < G_N_ELEMENTS (d->got_signal); i++) {
if (!d->got_signal[i])
break;
}
if (i == G_N_ELEMENTS (d->got_signal))
g_main_loop_quit (d->loop1);
return G_SOURCE_REMOVE;
}
static gboolean
_test_integrate_cb_timeout_1 (gpointer user_data)
{
return _test_integrate_cb_handle (user_data, 0);
}
static gboolean
_test_integrate_cb_fd_2 (int fd,
GIOCondition condition,
gpointer user_data)
{
IntegData *d = user_data;
g_assert (d->got_signal[1]);
g_assert (d->got_signal[2]);
g_assert (d->got_signal[3]);
g_assert (d->extra_sources[0]);
g_assert (d->extra_sources[1]);
return _test_integrate_cb_handle (d, 4);
}
static gboolean
_test_integrate_cb_idle_2 (gpointer user_data)
{
IntegData *d = user_data;
GSource *extra_source;
g_assert (d->got_signal[1]);
g_assert (d->got_signal[2]);
g_assert (d->extra_sources[0]);
g_assert (!d->extra_sources[1]);
extra_source = nm_g_unix_fd_source_new (d->fd_2,
G_IO_IN,
G_PRIORITY_DEFAULT,
_test_integrate_cb_fd_2,
d,
NULL);
shared: add nm_utils_g_main_context_create_integrate_source() for integrating a GMainContext in another We will rework NMClient entirely. Then, the synchronous initialization will also use the asynchronous code paths. The difference will be that with synchronous initialization, all D-Bus interaction will be done with an internal GMainContext as current thread default, and that internal context will run until initialization completes. Note that even after initialization completes, it cannot be swapped back to the user's (outer) GMainContext. That is because contexts are essentially the queue for our D-Bus events, and we cannot swap from one queue to the other in a race free manner (or a full resync). In other words, the two contexts are not in sync, so after using the internal context NMClient needs to stick to that (at least, until the name owner gets lost, which gives an opportunity to resync and switch back to the user's main context). We thus need to hook the internal (inner) GMainContext with the user's (outer) context, so when the user iterates the outer context, events on the inner context get dispatched. Add nm_utils_g_main_context_create_integrate_source() to create such a GSource for integrating two contexts. Note that the use-case here is limited: the integrated, inner main context must not be explicitly iterated except from being dispatched by the integrating source. Otherwise, you'd get recursive runs, possible deadlocks and general ugliness. NMClient must show restrain how to use the inner context while it is integrated.
2019-11-02 16:55:43 +01:00
g_source_attach (extra_source, d->c2);
d->extra_sources[1] = extra_source;
return _test_integrate_cb_handle (d, 3);
}
static gboolean
_test_integrate_cb_idle_1 (gpointer user_data)
{
IntegData *d = user_data;
GSource *extra_source;
g_assert (d->got_signal[2]);
g_assert (!d->extra_sources[0]);
extra_source = g_idle_source_new ();
g_source_set_callback (extra_source, _test_integrate_cb_idle_2, d, NULL);
g_source_attach (extra_source, d->c2);
d->extra_sources[0] = extra_source;
return _test_integrate_cb_handle (d, 1);
}
static gboolean
_test_integrate_cb_fd_1 (int fd,
GIOCondition condition,
gpointer user_data)
{
IntegData *d = user_data;
g_assert (!d->got_signal[1]);
return _test_integrate_cb_handle (d, 2);
}
static gboolean
_test_integrate_maincontext_cb_idle1 (gpointer user_data)
{
guint32 *p_count = user_data;
g_assert (*p_count < 5);
(*p_count)++;
return G_SOURCE_CONTINUE;
}
static void
test_integrate_maincontext (gconstpointer test_data)
{
const guint TEST_IDX = GPOINTER_TO_UINT (test_data);
GMainContext *c1 = g_main_context_default ();
nm_auto_unref_gmaincontext GMainContext *c2 = g_main_context_new ();
nm_auto_destroy_and_unref_gsource GSource *integ_source = NULL;
integ_source = nm_utils_g_main_context_create_integrate_source (c2);
g_source_attach (integ_source, c1);
if (TEST_IDX == 1) {
nm_auto_destroy_and_unref_gsource GSource *idle_source_1 = NULL;
guint32 count = 0;
idle_source_1 = g_idle_source_new ();
g_source_set_callback (idle_source_1, _test_integrate_maincontext_cb_idle1, &count, NULL);
g_source_attach (idle_source_1, c2);
nmtst_main_context_iterate_until_assert (c1, 2000, count == 5);
shared: add nm_utils_g_main_context_create_integrate_source() for integrating a GMainContext in another We will rework NMClient entirely. Then, the synchronous initialization will also use the asynchronous code paths. The difference will be that with synchronous initialization, all D-Bus interaction will be done with an internal GMainContext as current thread default, and that internal context will run until initialization completes. Note that even after initialization completes, it cannot be swapped back to the user's (outer) GMainContext. That is because contexts are essentially the queue for our D-Bus events, and we cannot swap from one queue to the other in a race free manner (or a full resync). In other words, the two contexts are not in sync, so after using the internal context NMClient needs to stick to that (at least, until the name owner gets lost, which gives an opportunity to resync and switch back to the user's main context). We thus need to hook the internal (inner) GMainContext with the user's (outer) context, so when the user iterates the outer context, events on the inner context get dispatched. Add nm_utils_g_main_context_create_integrate_source() to create such a GSource for integrating two contexts. Note that the use-case here is limited: the integrated, inner main context must not be explicitly iterated except from being dispatched by the integrating source. Otherwise, you'd get recursive runs, possible deadlocks and general ugliness. NMClient must show restrain how to use the inner context while it is integrated.
2019-11-02 16:55:43 +01:00
}
if (TEST_IDX == 2) {
nm_auto_destroy_and_unref_gsource GSource *main_timeout_source = NULL;
nm_auto_destroy_and_unref_gsource GSource *timeout_source_1 = NULL;
nm_auto_destroy_and_unref_gsource GSource *idle_source_1 = NULL;
nm_auto_destroy_and_unref_gsource GSource *fd_source_1 = NULL;
nm_auto_unref_gmainloop GMainLoop *loop1 = NULL;
nm_auto_close int fd_1 = -1;
nm_auto_close int fd_2 = -1;
IntegData d;
int i;
main_timeout_source = g_timeout_source_new (3000);
g_source_set_callback (main_timeout_source, nmtst_g_source_assert_not_called, NULL, NULL);
g_source_attach (main_timeout_source, c1);
loop1 = g_main_loop_new (c1, FALSE);
d = (IntegData) {
.loop1 = loop1,
.c2 = c2,
};
fd_1 = open ("/dev/null", O_RDONLY | O_CLOEXEC);
g_assert (fd_1 >= 0);
fd_source_1 = nm_g_unix_fd_source_new (fd_1,
G_IO_IN,
G_PRIORITY_DEFAULT,
_test_integrate_cb_fd_1,
&d,
NULL);
shared: add nm_utils_g_main_context_create_integrate_source() for integrating a GMainContext in another We will rework NMClient entirely. Then, the synchronous initialization will also use the asynchronous code paths. The difference will be that with synchronous initialization, all D-Bus interaction will be done with an internal GMainContext as current thread default, and that internal context will run until initialization completes. Note that even after initialization completes, it cannot be swapped back to the user's (outer) GMainContext. That is because contexts are essentially the queue for our D-Bus events, and we cannot swap from one queue to the other in a race free manner (or a full resync). In other words, the two contexts are not in sync, so after using the internal context NMClient needs to stick to that (at least, until the name owner gets lost, which gives an opportunity to resync and switch back to the user's main context). We thus need to hook the internal (inner) GMainContext with the user's (outer) context, so when the user iterates the outer context, events on the inner context get dispatched. Add nm_utils_g_main_context_create_integrate_source() to create such a GSource for integrating two contexts. Note that the use-case here is limited: the integrated, inner main context must not be explicitly iterated except from being dispatched by the integrating source. Otherwise, you'd get recursive runs, possible deadlocks and general ugliness. NMClient must show restrain how to use the inner context while it is integrated.
2019-11-02 16:55:43 +01:00
g_source_attach (fd_source_1, c2);
fd_2 = open ("/dev/null", O_RDONLY | O_CLOEXEC);
g_assert (fd_2 >= 0);
d.fd_2 = fd_2;
idle_source_1 = g_idle_source_new ();
g_source_set_callback (idle_source_1, _test_integrate_cb_idle_1, &d, NULL);
g_source_attach (idle_source_1, c2);
timeout_source_1 = g_timeout_source_new (5);
g_source_set_callback (timeout_source_1, _test_integrate_cb_timeout_1, &d, NULL);
g_source_attach (timeout_source_1, c2);
g_main_loop_run (loop1);
for (i = 0; i < G_N_ELEMENTS (d.extra_sources); i++) {
g_assert (d.extra_sources[i]);
nm_clear_pointer (&d.extra_sources[i], nm_g_source_destroy_and_unref);
}
}
}
/*****************************************************************************/
static void
test_nm_ip_addr_zero (void)
{
in_addr_t a4 = nmtst_inet4_from_string ("0.0.0.0");
struct in6_addr a6 = *nmtst_inet6_from_string ("::");
char buf[NM_UTILS_INET_ADDRSTRLEN];
NMIPAddr a = NM_IP_ADDR_INIT;
g_assert (memcmp (&a, &nm_ip_addr_zero, sizeof (a)) == 0);
g_assert (IN6_IS_ADDR_UNSPECIFIED (&nm_ip_addr_zero.addr6));
g_assert (memcmp (&nm_ip_addr_zero.addr6, &in6addr_any, sizeof (in6addr_any)) == 0);
g_assert (memcmp (&nm_ip_addr_zero, &a4, sizeof (a4)) == 0);
g_assert (memcmp (&nm_ip_addr_zero, &a6, sizeof (a6)) == 0);
g_assert_cmpstr (_nm_utils_inet4_ntop (nm_ip_addr_zero.addr4, buf), ==, "0.0.0.0");
g_assert_cmpstr (_nm_utils_inet6_ntop (&nm_ip_addr_zero.addr6, buf), ==, "::");
g_assert_cmpstr (nm_utils_inet_ntop (AF_INET, &nm_ip_addr_zero, buf), ==, "0.0.0.0");
g_assert_cmpstr (nm_utils_inet_ntop (AF_INET6, &nm_ip_addr_zero, buf), ==, "::");
G_STATIC_ASSERT_EXPR (sizeof (a) == sizeof (a.array));
}
static void
test_connection_ovs_ifname (gconstpointer test_data)
{
const guint TEST_CASE = GPOINTER_TO_UINT (test_data);
gs_unref_object NMConnection *con = NULL;
NMSettingConnection *s_con = NULL;
NMSettingOvsBridge *s_ovs_bridge = NULL;
NMSettingOvsPort *s_ovs_port = NULL;
NMSettingOvsInterface *s_ovs_iface = NULL;
NMSettingOvsPatch *s_ovs_patch = NULL;
const char *ovs_iface_type = NULL;
switch (TEST_CASE) {
case 1:
con = nmtst_create_minimal_connection ("test_connection_ovs_ifname_bridge",
NULL,
NM_SETTING_OVS_BRIDGE_SETTING_NAME, &s_con);
s_ovs_bridge = nm_connection_get_setting_ovs_bridge (con);
g_assert (s_ovs_bridge);
break;
case 2:
con = nmtst_create_minimal_connection ("test_connection_ovs_ifname_port",
NULL,
NM_SETTING_OVS_PORT_SETTING_NAME, &s_con);
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER,
"master0",
NM_SETTING_CONNECTION_SLAVE_TYPE,
NM_SETTING_OVS_BRIDGE_SETTING_NAME,
NULL);
s_ovs_port = nm_connection_get_setting_ovs_port (con);
g_assert (s_ovs_port);
break;
case 3:
con = nmtst_create_minimal_connection ("test_connection_ovs_ifname_interface_patch",
NULL,
NM_SETTING_OVS_INTERFACE_SETTING_NAME, &s_con);
s_ovs_iface = nm_connection_get_setting_ovs_interface (con);
g_assert (s_ovs_iface);
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER,
"master0",
NM_SETTING_CONNECTION_SLAVE_TYPE,
NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
g_object_set (s_ovs_iface,
NM_SETTING_OVS_INTERFACE_TYPE,
"patch",
NULL);
s_ovs_patch = NM_SETTING_OVS_PATCH (nm_setting_ovs_patch_new());
g_assert (s_ovs_patch);
g_object_set (s_ovs_patch,
NM_SETTING_OVS_PATCH_PEER, "1.2.3.4",
NULL);
nm_connection_add_setting (con, NM_SETTING (s_ovs_patch));
s_ovs_patch = nm_connection_get_setting_ovs_patch (con);
g_assert (s_ovs_patch);
ovs_iface_type = "patch";
break;
case 4:
con = nmtst_create_minimal_connection ("test_connection_ovs_ifname_interface_internal",
NULL,
NM_SETTING_OVS_INTERFACE_SETTING_NAME, &s_con);
s_ovs_iface = nm_connection_get_setting_ovs_interface (con);
g_assert (s_ovs_iface);
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER,
"master0",
NM_SETTING_CONNECTION_SLAVE_TYPE,
NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
g_object_set (s_ovs_iface,
NM_SETTING_OVS_INTERFACE_TYPE,
"internal",
NULL);
ovs_iface_type = "internal";
break;
case 5:
con = nmtst_create_minimal_connection ("test_connection_ovs_ifname_interface_system",
NULL,
NM_SETTING_WIRED_SETTING_NAME, &s_con);
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER,
"master0",
NM_SETTING_CONNECTION_SLAVE_TYPE,
NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
s_ovs_iface = NM_SETTING_OVS_INTERFACE (nm_setting_ovs_interface_new());
g_assert (s_ovs_iface);
g_object_set (s_ovs_iface,
NM_SETTING_OVS_INTERFACE_TYPE,
"system",
NULL);
nm_connection_add_setting (con, NM_SETTING (s_ovs_iface));
s_ovs_iface = nm_connection_get_setting_ovs_interface (con);
g_assert (s_ovs_iface);
ovs_iface_type = "system";
break;
case 6:
con = nmtst_create_minimal_connection ("test_connection_ovs_ifname_interface_dpdk",
NULL,
NM_SETTING_OVS_INTERFACE_SETTING_NAME, &s_con);
s_ovs_iface = nm_connection_get_setting_ovs_interface (con);
g_assert (s_ovs_iface);
g_object_set (s_con,
NM_SETTING_CONNECTION_MASTER,
"master0",
NM_SETTING_CONNECTION_SLAVE_TYPE,
NM_SETTING_OVS_PORT_SETTING_NAME,
NULL);
g_object_set (s_ovs_iface,
NM_SETTING_OVS_INTERFACE_TYPE,
"dpdk",
NULL);
ovs_iface_type = "dpdk";
break;
}
if (!nm_streq0 (ovs_iface_type, "system")) {
/* wrong: contains backward slash */
g_object_set (s_con,
NM_SETTING_CONNECTION_INTERFACE_NAME, "ovs\\0",
NULL);
nmtst_assert_connection_unnormalizable (con,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
/* wrong: contains forward slash */
g_object_set (s_con,
NM_SETTING_CONNECTION_INTERFACE_NAME, "ovs/0",
NULL);
nmtst_assert_connection_unnormalizable (con,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
}
/* wrong: contains space */
g_object_set (s_con,
NM_SETTING_CONNECTION_INTERFACE_NAME, "ovs 0",
NULL);
nmtst_assert_connection_unnormalizable (con,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
/* good */
g_object_set (s_con,
NM_SETTING_CONNECTION_INTERFACE_NAME, "ovs0",
NULL);
nmtst_assert_connection_verifies (con);
g_object_set (s_con,
NM_SETTING_CONNECTION_INTERFACE_NAME, "ovs-br0",
NULL);
nmtst_assert_connection_verifies (con);
/* good if bridge, port, or patch interface */
g_object_set (s_con,
NM_SETTING_CONNECTION_INTERFACE_NAME, "ovs123123123123130123123",
NULL);
if (!ovs_iface_type || nm_streq (ovs_iface_type, "patch"))
nmtst_assert_connection_verifies (con);
else {
nmtst_assert_connection_unnormalizable (con,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY);
}
}
/*****************************************************************************/
static gboolean
_strsplit_quoted_char_needs_escaping (char ch)
{
return NM_IN_SET (ch, '\'', '\"', '\\')
|| strchr (NM_ASCII_WHITESPACES, ch);
}
static char *
_strsplit_quoted_create_str_rand (gssize len)
{
NMStrBuf strbuf = NM_STR_BUF_INIT (nmtst_get_rand_uint32 () % 200, nmtst_get_rand_bool ());
g_assert (len >= -1);
if (len == -1)
len = nmtst_get_rand_word_length (NULL);
while (len-- > 0) {
char ch;
ch = nmtst_rand_select ('a', ' ', '\\', '"', '\'', nmtst_get_rand_uint32 () % 255 + 1);
g_assert (ch);
nm_str_buf_append_c (&strbuf, ch);
}
if (!strbuf.allocated)
nm_str_buf_maybe_expand (&strbuf, 1, nmtst_get_rand_bool ());
return nm_str_buf_finalize (&strbuf, NULL);
}
static char **
_strsplit_quoted_create_strv_rand (void)
{
guint len = nmtst_get_rand_word_length (NULL);
char **ptr;
guint i;
ptr = g_new (char *, len + 1);
for (i = 0; i < len; i++)
ptr[i] = _strsplit_quoted_create_str_rand (-1);
ptr[i] = NULL;
return ptr;
}
static char *
_strsplit_quoted_join_strv_rand (const char *const*strv)
{
NMStrBuf strbuf = NM_STR_BUF_INIT (nmtst_get_rand_uint32 () % 200, nmtst_get_rand_bool ());
char *result;
gsize l;
gsize l2;
gsize *p_l2 = nmtst_get_rand_bool () ? &l2 : NULL;
gsize i;
g_assert (strv);
nm_str_buf_append_c_repeated (&strbuf, ' ', nmtst_get_rand_word_length (NULL) / 4);
for (i = 0; strv[i]; i++) {
const char *s = strv[i];
gsize j;
char quote;
nm_str_buf_append_c_repeated (&strbuf, ' ', 1 + nmtst_get_rand_word_length (NULL) / 4);
j = 0;
quote = '\0';
while (TRUE) {
char ch = s[j++];
/* extract_first_word*/
if (quote != '\0') {
if (ch == '\0') {
nm_str_buf_append_c (&strbuf, quote);
break;
}
if ( ch == quote
|| ch == '\\'
|| nmtst_get_rand_uint32 () % 5 == 0)
nm_str_buf_append_c (&strbuf, '\\');
nm_str_buf_append_c (&strbuf, ch);
if (nmtst_get_rand_uint32 () % 3 == 0) {
nm_str_buf_append_c (&strbuf, quote);
quote = '\0';
goto next_maybe_quote;
}
continue;
}
if (ch == '\0') {
if (s == strv[i]) {
quote = nmtst_rand_select ('\'', '"');
nm_str_buf_append_c_repeated (&strbuf, quote, 2);
}
break;
}
if ( _strsplit_quoted_char_needs_escaping (ch)
|| nmtst_get_rand_uint32 () % 5 == 0)
nm_str_buf_append_c (&strbuf, '\\');
nm_str_buf_append_c (&strbuf, ch);
next_maybe_quote:
if (nmtst_get_rand_uint32 () % 5 == 0) {
quote = nmtst_rand_select ('\'', '\"');
nm_str_buf_append_c (&strbuf, quote);
if (nmtst_get_rand_uint32 () % 5 == 0) {
nm_str_buf_append_c (&strbuf, quote);
quote = '\0';
}
}
}
}
nm_str_buf_append_c_repeated (&strbuf, ' ', nmtst_get_rand_word_length (NULL) / 4);
nm_str_buf_maybe_expand (&strbuf, 1, nmtst_get_rand_bool ());
l = strbuf.len;
result = nm_str_buf_finalize (&strbuf, p_l2);
g_assert (!p_l2 || l == *p_l2);
g_assert (strlen (result) == l);
return result;
}
static void
_strsplit_quoted_assert_strv (const char *topic,
const char *str,
const char *const*strv1,
const char *const*strv2)
{
nm_auto_str_buf NMStrBuf s1 = { };
nm_auto_str_buf NMStrBuf s2 = { };
gs_free char *str_escaped = NULL;
int i;
g_assert (str);
g_assert (strv1);
g_assert (strv2);
if (_nm_utils_strv_equal ((char **) strv1, (char **) strv2))
return;
for (i = 0; strv1[i]; i++) {
gs_free char *s = g_strescape (strv1[i], NULL);
g_print (">>> [%s] strv1[%d] = \"%s\"\n", topic, i, s);
if (i > 0)
nm_str_buf_append_c (&s1, ' ');
nm_str_buf_append_printf (&s1, "\"%s\"", s);
}
for (i = 0; strv2[i]; i++) {
gs_free char *s = g_strescape (strv2[i], NULL);
g_print (">>> [%s] strv2[%d] = \"%s\"\n", topic, i, s);
if (i > 0)
nm_str_buf_append_c (&s2, ' ');
nm_str_buf_append_printf (&s2, "\"%s\"", s);
}
nm_str_buf_maybe_expand (&s1, 1, FALSE);
nm_str_buf_maybe_expand (&s2, 1, FALSE);
str_escaped = g_strescape (str, NULL);
g_error ("compared words differs: [%s] str=\"%s\"; strv1=%s; strv2=%s", topic, str_escaped, nm_str_buf_get_str (&s1), nm_str_buf_get_str (&s2));
}
static void
_strsplit_quoted_test (const char *str,
const char *const*strv_expected)
{
gs_strfreev char **strv_systemd = NULL;
gs_strfreev char **strv_nm = NULL;
int r;
g_assert (str);
r = nmtst_systemd_extract_first_word_all (str, &strv_systemd);
g_assert_cmpint (r, ==, 1);
g_assert (strv_systemd);
if (!strv_expected)
strv_expected = (const char *const*) strv_systemd;
_strsplit_quoted_assert_strv ("systemd", str, strv_expected, (const char *const*) strv_systemd);
strv_nm = nm_utils_strsplit_quoted (str);
g_assert (strv_nm);
_strsplit_quoted_assert_strv ("nm", str, strv_expected, (const char *const*) strv_nm);
}
static void
test_strsplit_quoted (void)
{
int i_run;
_strsplit_quoted_test ("", NM_MAKE_STRV ());
_strsplit_quoted_test (" ", NM_MAKE_STRV ());
_strsplit_quoted_test (" ", NM_MAKE_STRV ());
_strsplit_quoted_test (" \t", NM_MAKE_STRV ());
_strsplit_quoted_test ("a b", NM_MAKE_STRV ("a", "b"));
_strsplit_quoted_test ("a\\ b", NM_MAKE_STRV ("a b"));
_strsplit_quoted_test (" a\\ \"b\"", NM_MAKE_STRV ("a b"));
_strsplit_quoted_test (" a\\ \"b\" c \n", NM_MAKE_STRV ("a b", "c"));
for (i_run = 0; i_run < 1000; i_run++) {
gs_strfreev char **strv = NULL;
gs_free char *str = NULL;
/* create random strv array and join them carefully so that splitting
* them will yield the original value. */
strv = _strsplit_quoted_create_strv_rand ();
str = _strsplit_quoted_join_strv_rand ((const char *const*) strv);
_strsplit_quoted_test (str, (const char *const*) strv);
}
/* Create random words and assert that systemd and our implementation can
* both split them (and in the exact same way). */
for (i_run = 0; i_run < 1000; i_run++) {
gs_free char *s = _strsplit_quoted_create_str_rand (nmtst_get_rand_uint32 () % 150);
_strsplit_quoted_test (s, NULL);
}
}
/*****************************************************************************/
static void
_do_wifi_ghz_freqs (const guint *freqs, const char *band)
{
int len;
int j;
int i;
g_assert (NM_IN_STRSET (band, "a", "bg"));
g_assert (freqs);
g_assert (freqs[0] != 0);
for (i = 0; freqs[i]; i++) {
for (j = 0; j < i; j++)
g_assert (freqs[i] != freqs[j]);
}
len = i;
g_assert (nm_utils_wifi_freq_to_channel (0) == 0);
g_assert (nm_utils_wifi_channel_to_freq (0, "bg") == -1);
g_assert (nm_utils_wifi_channel_to_freq (0, "foo") == 0);
g_assert (!nm_utils_wifi_is_channel_valid (0, "bg"));
g_assert (!nm_utils_wifi_is_channel_valid (0, "foo"));
for (i = 0; i < len; i++) {
guint freq = freqs[i];
guint32 chan;
guint32 freq2;
chan = nm_utils_wifi_freq_to_channel (freq);
g_assert (chan != 0);
freq2 = nm_utils_wifi_channel_to_freq (chan, band);
g_assert (freq2 == freq);
g_assert (nm_utils_wifi_is_channel_valid (chan, band));
}
g_assert (freqs[len] == 0);
}
static void
test_nm_utils_wifi_ghz_freqs (void)
{
_do_wifi_ghz_freqs (nm_utils_wifi_2ghz_freqs (), "bg");
_do_wifi_ghz_freqs (nm_utils_wifi_5ghz_freqs (), "a");
}
/*****************************************************************************/
NMTST_DEFINE ();
int main (int argc, char **argv)
{
nmtst_init (&argc, &argv, TRUE);
2019-03-20 10:43:54 +01:00
g_test_add_func ("/core/general/test_nm_ascii_spaces", test_nm_ascii_spaces);
g_test_add_func ("/core/general/test_nm_hash", test_nm_hash);
g_test_add_func ("/core/general/test_nm_g_slice_free_fcn", test_nm_g_slice_free_fcn);
g_test_add_func ("/core/general/test_c_list_sort", test_c_list_sort);
shared: add NMDedupMultiIndex "nm-dedup-multi.h" Add the NMDedupMultiIndex cache. It basically tracks objects as doubly linked list. With the addition that each object and the list head is indexed by a hash table. Also, it supports tracking multiple distinct lists, all indexed by the idx-type instance. It also deduplicates the tracked objects and shares them. - the objects that can be put into the cache must be immutable and ref-counted. That is, the cache will deduplicate them and share the reference. Also, as these objects are immutable and ref-counted, it is safe that users outside the cache own them too (as long as they keep them immutable and manage their reference properly). The deduplication uses obj_id_hash_func() and obj_id_equal_func(). These functions must cover *every* aspect of the objects when comparing equality. For example nm_platform_ip4_route_cmp() would be a function that qualifies as obj_id_equal_func(). The cache creates references to the objects as needed and gives them back. This happens via obj_get_ref() and obj_put_ref(). Note that obj_get_ref() is free to create a new object, for example to convert a stack-allocated object to a (ref-counted) heap allocated one. The deduplication process creates NMDedupIndexBox instances which are the ref-counted entity. In principle, the objects themself don't need to be ref-counted as that is handled by the boxing instance. - The cache doesn't only do deduplication. It is a multi-index, meaning, callers add objects using a index handle NMDedupMultiIdxType. The NMDedupMultiIdxType instance is the access handle to lookup the list and objects inside the cache. Note that the idx-type instance may partition the objects in distinct lists. For all operations there are cross-references and hash table lookups. Hence, every operation of this data structure is O(1) and the memory overhead for an index tracking an object is constant. The cache preserves ordering (due to linked list) and exposes the list as public API. This allows users to iterate the list without any additional copying of elements.
2017-06-04 22:43:21 +02:00
g_test_add_func ("/core/general/test_dedup_multi", test_dedup_multi);
g_test_add_func ("/core/general/test_utils_str_utf8safe", test_utils_str_utf8safe);
g_test_add_func ("/core/general/test_nm_utils_strsplit_set", test_nm_utils_strsplit_set);
g_test_add_func ("/core/general/test_nm_utils_escaped_tokens", test_nm_utils_escaped_tokens);
g_test_add_func ("/core/general/test_nm_in_set", test_nm_in_set);
g_test_add_func ("/core/general/test_nm_in_strset", test_nm_in_strset);
g_test_add_func ("/core/general/test_setting_vpn_items", test_setting_vpn_items);
g_test_add_func ("/core/general/test_setting_vpn_update_secrets", test_setting_vpn_update_secrets);
g_test_add_func ("/core/general/test_setting_vpn_modify_during_foreach", test_setting_vpn_modify_during_foreach);
g_test_add_func ("/core/general/test_setting_ip4_config_labels", test_setting_ip4_config_labels);
g_test_add_func ("/core/general/test_setting_ip4_config_address_data", test_setting_ip4_config_address_data);
g_test_add_func ("/core/general/test_setting_ip_route_attributes", test_setting_ip_route_attributes);
g_test_add_func ("/core/general/test_setting_gsm_apn_spaces", test_setting_gsm_apn_spaces);
g_test_add_func ("/core/general/test_setting_gsm_apn_bad_chars", test_setting_gsm_apn_bad_chars);
g_test_add_func ("/core/general/test_setting_gsm_apn_underscore", test_setting_gsm_apn_underscore);
g_test_add_func ("/core/general/test_setting_gsm_without_number", test_setting_gsm_without_number);
g_test_add_func ("/core/general/test_setting_gsm_sim_operator_id", test_setting_gsm_sim_operator_id);
g_test_add_func ("/core/general/test_setting_to_dbus_all", test_setting_to_dbus_all);
g_test_add_func ("/core/general/test_setting_to_dbus_no_secrets", test_setting_to_dbus_no_secrets);
g_test_add_func ("/core/general/test_setting_to_dbus_only_secrets", test_setting_to_dbus_only_secrets);
g_test_add_func ("/core/general/test_setting_to_dbus_transform", test_setting_to_dbus_transform);
g_test_add_func ("/core/general/test_setting_to_dbus_enum", test_setting_to_dbus_enum);
g_test_add_func ("/core/general/test_setting_compare_id", test_setting_compare_id);
g_test_add_func ("/core/general/test_setting_compare_addresses", test_setting_compare_addresses);
g_test_add_func ("/core/general/test_setting_compare_routes", test_setting_compare_routes);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
g_test_add_func ("/core/general/test_setting_compare_wired_cloned_mac_address", test_setting_compare_wired_cloned_mac_address);
g_test_add_func ("/core/general/test_setting_compare_wirless_cloned_mac_address", test_setting_compare_wireless_cloned_mac_address);
g_test_add_func ("/core/general/test_setting_compare_timestamp", test_setting_compare_timestamp);
#define ADD_FUNC(name, func, secret_flags, comp_flags, remove_secret) \
g_test_add_data_func_full ("/core/general/" G_STRINGIFY (func) "_" name, \
test_data_compare_secrets_new (secret_flags, comp_flags, remove_secret), \
func, g_free)
ADD_FUNC ("agent_owned", test_setting_compare_secrets, NM_SETTING_SECRET_FLAG_AGENT_OWNED, NM_SETTING_COMPARE_FLAG_IGNORE_AGENT_OWNED_SECRETS, TRUE);
ADD_FUNC ("not_saved", test_setting_compare_secrets, NM_SETTING_SECRET_FLAG_NOT_SAVED, NM_SETTING_COMPARE_FLAG_IGNORE_NOT_SAVED_SECRETS, TRUE);
ADD_FUNC ("secrets", test_setting_compare_secrets, NM_SETTING_SECRET_FLAG_NONE, NM_SETTING_COMPARE_FLAG_IGNORE_SECRETS, TRUE);
ADD_FUNC ("exact", test_setting_compare_secrets, NM_SETTING_SECRET_FLAG_NONE, NM_SETTING_COMPARE_FLAG_EXACT, FALSE);
ADD_FUNC ("agent_owned", test_setting_compare_vpn_secrets, NM_SETTING_SECRET_FLAG_AGENT_OWNED, NM_SETTING_COMPARE_FLAG_IGNORE_AGENT_OWNED_SECRETS, TRUE);
ADD_FUNC ("not_saved", test_setting_compare_vpn_secrets, NM_SETTING_SECRET_FLAG_NOT_SAVED, NM_SETTING_COMPARE_FLAG_IGNORE_NOT_SAVED_SECRETS, TRUE);
ADD_FUNC ("secrets", test_setting_compare_vpn_secrets, NM_SETTING_SECRET_FLAG_NONE, NM_SETTING_COMPARE_FLAG_IGNORE_SECRETS, TRUE);
ADD_FUNC ("exact", test_setting_compare_vpn_secrets, NM_SETTING_SECRET_FLAG_NONE, NM_SETTING_COMPARE_FLAG_EXACT, FALSE);
g_test_add_func ("/core/general/test_setting_old_uuid", test_setting_old_uuid);
g_test_add_func ("/core/general/test_connection_to_dbus_setting_name", test_connection_to_dbus_setting_name);
g_test_add_func ("/core/general/test_connection_to_dbus_deprecated_props", test_connection_to_dbus_deprecated_props);
g_test_add_func ("/core/general/test_setting_new_from_dbus", test_setting_new_from_dbus);
g_test_add_func ("/core/general/test_setting_new_from_dbus_transform", test_setting_new_from_dbus_transform);
g_test_add_func ("/core/general/test_setting_new_from_dbus_enum", test_setting_new_from_dbus_enum);
g_test_add_func ("/core/general/test_setting_new_from_dbus_bad", test_setting_new_from_dbus_bad);
g_test_add_func ("/core/general/test_connection_replace_settings", test_connection_replace_settings);
g_test_add_func ("/core/general/test_connection_replace_settings_from_connection", test_connection_replace_settings_from_connection);
g_test_add_func ("/core/general/test_connection_replace_settings_bad", test_connection_replace_settings_bad);
g_test_add_func ("/core/general/test_connection_new_from_dbus", test_connection_new_from_dbus);
g_test_add_func ("/core/general/test_connection_normalize_virtual_iface_name", test_connection_normalize_virtual_iface_name);
g_test_add_func ("/core/general/test_connection_normalize_uuid", test_connection_normalize_uuid);
g_test_add_func ("/core/general/test_connection_normalize_type", test_connection_normalize_type);
g_test_add_func ("/core/general/test_connection_normalize_slave_type_1", test_connection_normalize_slave_type_1);
g_test_add_func ("/core/general/test_connection_normalize_slave_type_2", test_connection_normalize_slave_type_2);
g_test_add_func ("/core/general/test_connection_normalize_infiniband_mtu", test_connection_normalize_infiniband_mtu);
g_test_add_func ("/core/general/test_connection_normalize_gateway_never_default", test_connection_normalize_gateway_never_default);
g_test_add_func ("/core/general/test_connection_normalize_may_fail", test_connection_normalize_may_fail);
g_test_add_func ("/core/general/test_connection_normalize_shared_addresses", test_connection_normalize_shared_addresses);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_system/1", GUINT_TO_POINTER (1), test_connection_normalize_ovs_interface_type_system);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_system/2", GUINT_TO_POINTER (2), test_connection_normalize_ovs_interface_type_system);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_system/3", GUINT_TO_POINTER (3), test_connection_normalize_ovs_interface_type_system);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_system/4", GUINT_TO_POINTER (4), test_connection_normalize_ovs_interface_type_system);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_system/5", GUINT_TO_POINTER (5), test_connection_normalize_ovs_interface_type_system);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_system/6", GUINT_TO_POINTER (6), test_connection_normalize_ovs_interface_type_system);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_system/7", GUINT_TO_POINTER (7), test_connection_normalize_ovs_interface_type_system);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/1", GUINT_TO_POINTER (1), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/2", GUINT_TO_POINTER (2), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/3", GUINT_TO_POINTER (3), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/4", GUINT_TO_POINTER (4), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/5", GUINT_TO_POINTER (5), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/6", GUINT_TO_POINTER (6), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/7", GUINT_TO_POINTER (7), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/8", GUINT_TO_POINTER (8), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/9", GUINT_TO_POINTER (9), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/10", GUINT_TO_POINTER (10), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/11", GUINT_TO_POINTER (11), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_normalize_ovs_interface_type_ovs_interface/12", GUINT_TO_POINTER (12), test_connection_normalize_ovs_interface_type_ovs_interface);
g_test_add_data_func ("/core/general/test_connection_ovs_ifname/1", GUINT_TO_POINTER (1), test_connection_ovs_ifname);
g_test_add_data_func ("/core/general/test_connection_ovs_ifname/2", GUINT_TO_POINTER (2), test_connection_ovs_ifname);
g_test_add_data_func ("/core/general/test_connection_ovs_ifname/3", GUINT_TO_POINTER (3), test_connection_ovs_ifname);
g_test_add_data_func ("/core/general/test_connection_ovs_ifname/4", GUINT_TO_POINTER (4), test_connection_ovs_ifname);
g_test_add_data_func ("/core/general/test_connection_ovs_ifname/5", GUINT_TO_POINTER (5), test_connection_ovs_ifname);
g_test_add_data_func ("/core/general/test_connection_ovs_ifname/6", GUINT_TO_POINTER (6), test_connection_ovs_ifname);
g_test_add_func ("/core/general/test_setting_connection_permissions_helpers", test_setting_connection_permissions_helpers);
g_test_add_func ("/core/general/test_setting_connection_permissions_property", test_setting_connection_permissions_property);
g_test_add_func ("/core/general/test_connection_compare_same", test_connection_compare_same);
g_test_add_func ("/core/general/test_connection_compare_key_only_in_a", test_connection_compare_key_only_in_a);
g_test_add_func ("/core/general/test_connection_compare_setting_only_in_a", test_connection_compare_setting_only_in_a);
g_test_add_func ("/core/general/test_connection_compare_key_only_in_b", test_connection_compare_key_only_in_b);
g_test_add_func ("/core/general/test_connection_compare_setting_only_in_b", test_connection_compare_setting_only_in_b);
g_test_add_func ("/core/general/test_connection_diff_a_only", test_connection_diff_a_only);
g_test_add_func ("/core/general/test_connection_diff_same", test_connection_diff_same);
g_test_add_func ("/core/general/test_connection_diff_different", test_connection_diff_different);
g_test_add_func ("/core/general/test_connection_diff_no_secrets", test_connection_diff_no_secrets);
g_test_add_func ("/core/general/test_connection_diff_inferrable", test_connection_diff_inferrable);
g_test_add_func ("/core/general/test_connection_good_base_types", test_connection_good_base_types);
g_test_add_func ("/core/general/test_connection_bad_base_types", test_connection_bad_base_types);
g_test_add_func ("/core/general/test_hwaddr_aton_ether_normal", test_hwaddr_aton_ether_normal);
g_test_add_func ("/core/general/test_hwaddr_aton_ib_normal", test_hwaddr_aton_ib_normal);
g_test_add_func ("/core/general/test_hwaddr_aton_no_leading_zeros", test_hwaddr_aton_no_leading_zeros);
g_test_add_func ("/core/general/test_hwaddr_aton_malformed", test_hwaddr_aton_malformed);
g_test_add_func ("/core/general/test_hwaddr_equal", test_hwaddr_equal);
g_test_add_func ("/core/general/test_hwaddr_canonical", test_hwaddr_canonical);
g_test_add_func ("/core/general/test_ip4_prefix_to_netmask", test_ip4_prefix_to_netmask);
g_test_add_func ("/core/general/test_ip4_netmask_to_prefix", test_ip4_netmask_to_prefix);
g_test_add_func ("/core/general/test_connection_changed_signal", test_connection_changed_signal);
g_test_add_func ("/core/general/test_setting_connection_changed_signal", test_setting_connection_changed_signal);
g_test_add_func ("/core/general/test_setting_bond_changed_signal", test_setting_bond_changed_signal);
g_test_add_func ("/core/general/test_setting_ip4_changed_signal", test_setting_ip4_changed_signal);
g_test_add_func ("/core/general/test_setting_ip6_changed_signal", test_setting_ip6_changed_signal);
g_test_add_func ("/core/general/test_setting_vlan_changed_signal", test_setting_vlan_changed_signal);
g_test_add_func ("/core/general/test_setting_vpn_changed_signal", test_setting_vpn_changed_signal);
g_test_add_func ("/core/general/test_setting_wired_changed_signal", test_setting_wired_changed_signal);
g_test_add_func ("/core/general/test_setting_wireless_changed_signal", test_setting_wireless_changed_signal);
g_test_add_func ("/core/general/test_setting_wireless_security_changed_signal", test_setting_wireless_security_changed_signal);
g_test_add_func ("/core/general/test_setting_802_1x_changed_signal", test_setting_802_1x_changed_signal);
g_test_add_func ("/core/general/test_setting_ip4_gateway", test_setting_ip4_gateway);
g_test_add_func ("/core/general/test_setting_ip6_gateway", test_setting_ip6_gateway);
g_test_add_func ("/core/general/test_setting_compare_default_strv", test_setting_compare_default_strv);
g_test_add_func ("/core/general/test_setting_user_data", test_setting_user_data);
g_test_add_func ("/core/general/test_sock_addr_endpoint", test_sock_addr_endpoint);
g_test_add_func ("/core/general/hexstr2bin", test_hexstr2bin);
g_test_add_func ("/core/general/nm_strquote", test_nm_strquote);
g_test_add_func ("/core/general/test_nm_utils_uuid_generate_from_string", test_nm_utils_uuid_generate_from_string);
g_test_add_func ("/core/general/_nm_utils_uuid_generate_from_strings", test_nm_utils_uuid_generate_from_strings);
g_test_add_func ("/core/general/_nm_utils_ascii_str_to_int64", test_nm_utils_ascii_str_to_int64);
g_test_add_func ("/core/general/nm_utils_is_power_of_two", test_nm_utils_is_power_of_two);
g_test_add_func ("/core/general/nm_utils_ptrarray_find_binary_search", test_nm_utils_ptrarray_find_binary_search);
g_test_add_func ("/core/general/nm_utils_ptrarray_find_binary_search_with_duplicates", test_nm_utils_ptrarray_find_binary_search_with_duplicates);
g_test_add_func ("/core/general/_nm_utils_strstrdictkey", test_nm_utils_strstrdictkey);
g_test_add_func ("/core/general/nm_ptrarray_len", test_nm_ptrarray_len);
g_test_add_func ("/core/general/_nm_utils_dns_option_validate", test_nm_utils_dns_option_validate);
g_test_add_func ("/core/general/_nm_utils_dns_option_find_idx", test_nm_utils_dns_option_find_idx);
g_test_add_func ("/core/general/_nm_utils_validate_json", test_nm_utils_check_valid_json);
g_test_add_func ("/core/general/_nm_utils_team_config_equal", test_nm_utils_team_config_equal);
g_test_add_func ("/core/general/test_nm_utils_enum", test_nm_utils_enum);
2016-09-26 16:59:30 +02:00
g_test_add_func ("/core/general/nm-set-out", test_nm_set_out);
g_test_add_func ("/core/general/route_attributes/parse", test_route_attributes_parse);
g_test_add_func ("/core/general/route_attributes/format", test_route_attributes_format);
g_test_add_func ("/core/general/test_variant_attribute_spec", test_variant_attribute_spec);
g_test_add_func ("/core/general/get_start_time_for_pid", test_get_start_time_for_pid);
g_test_add_func ("/core/general/test_nm_va_args_macros", test_nm_va_args_macros);
g_test_add_func ("/core/general/test_ethtool_offload", test_ethtool_offload);
shared: add nm_utils_g_main_context_create_integrate_source() for integrating a GMainContext in another We will rework NMClient entirely. Then, the synchronous initialization will also use the asynchronous code paths. The difference will be that with synchronous initialization, all D-Bus interaction will be done with an internal GMainContext as current thread default, and that internal context will run until initialization completes. Note that even after initialization completes, it cannot be swapped back to the user's (outer) GMainContext. That is because contexts are essentially the queue for our D-Bus events, and we cannot swap from one queue to the other in a race free manner (or a full resync). In other words, the two contexts are not in sync, so after using the internal context NMClient needs to stick to that (at least, until the name owner gets lost, which gives an opportunity to resync and switch back to the user's main context). We thus need to hook the internal (inner) GMainContext with the user's (outer) context, so when the user iterates the outer context, events on the inner context get dispatched. Add nm_utils_g_main_context_create_integrate_source() to create such a GSource for integrating two contexts. Note that the use-case here is limited: the integrated, inner main context must not be explicitly iterated except from being dispatched by the integrating source. Otherwise, you'd get recursive runs, possible deadlocks and general ugliness. NMClient must show restrain how to use the inner context while it is integrated.
2019-11-02 16:55:43 +01:00
g_test_add_data_func ("/core/general/test_integrate_maincontext/1", GUINT_TO_POINTER (1), test_integrate_maincontext);
g_test_add_data_func ("/core/general/test_integrate_maincontext/2", GUINT_TO_POINTER (2), test_integrate_maincontext);
g_test_add_func ("/core/general/test_nm_ip_addr_zero", test_nm_ip_addr_zero);
g_test_add_func ("/core/general/test_nm_utils_wifi_ghz_freqs", test_nm_utils_wifi_ghz_freqs);
g_test_add_func ("/core/general/test_strsplit_quoted", test_strsplit_quoted);
return g_test_run ();
}