NetworkManager/shared/nm-meta-setting.c

478 lines
20 KiB
C
Raw Normal View History

/* -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
/*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA.
*
2018-03-09 18:21:10 +01:00
* Copyright 2017 - 2018 Red Hat, Inc.
*/
#include "nm-default.h"
#include "nm-meta-setting.h"
2018-05-22 17:11:30 +02:00
#include "nm-setting-6lowpan.h"
#include "nm-setting-8021x.h"
#include "nm-setting-adsl.h"
#include "nm-setting-bluetooth.h"
#include "nm-setting-bond.h"
#include "nm-setting-bridge.h"
#include "nm-setting-bridge-port.h"
#include "nm-setting-cdma.h"
#include "nm-setting-connection.h"
#include "nm-setting-dcb.h"
#include "nm-setting-dummy.h"
#include "nm-setting-generic.h"
#include "nm-setting-gsm.h"
#include "nm-setting-infiniband.h"
#include "nm-setting-ip4-config.h"
#include "nm-setting-ip6-config.h"
#include "nm-setting-ip-config.h"
#include "nm-setting-ip-tunnel.h"
#include "nm-setting-macsec.h"
#include "nm-setting-macvlan.h"
#include "nm-setting-olpc-mesh.h"
#include "nm-setting-ovs-bridge.h"
#include "nm-setting-ovs-interface.h"
#include "nm-setting-ovs-patch.h"
#include "nm-setting-ovs-port.h"
#include "nm-setting-ppp.h"
#include "nm-setting-pppoe.h"
#include "nm-setting-proxy.h"
#include "nm-setting-serial.h"
#include "nm-setting-tc-config.h"
#include "nm-setting-team.h"
#include "nm-setting-team-port.h"
#include "nm-setting-tun.h"
#include "nm-setting-user.h"
#include "nm-setting-vlan.h"
#include "nm-setting-vpn.h"
#include "nm-setting-vxlan.h"
#include "nm-setting-wimax.h"
#include "nm-setting-wired.h"
#include "nm-setting-wireless.h"
#include "nm-setting-wireless-security.h"
2018-03-09 18:21:10 +01:00
#include "nm-setting-wpan.h"
/*****************************************************************************/
const NMSetting8021xSchemeVtable nm_setting_8021x_scheme_vtable[] = {
[NM_SETTING_802_1X_SCHEME_TYPE_CA_CERT] = {
.setting_key = NM_SETTING_802_1X_CA_CERT,
.scheme_func = nm_setting_802_1x_get_ca_cert_scheme,
.format_func = NULL,
.path_func = nm_setting_802_1x_get_ca_cert_path,
.blob_func = nm_setting_802_1x_get_ca_cert_blob,
.uri_func = nm_setting_802_1x_get_ca_cert_uri,
.passwd_func = nm_setting_802_1x_get_ca_cert_password,
.pwflag_func = nm_setting_802_1x_get_ca_cert_password_flags,
.file_suffix = "ca-cert",
},
[NM_SETTING_802_1X_SCHEME_TYPE_PHASE2_CA_CERT] = {
.setting_key = NM_SETTING_802_1X_PHASE2_CA_CERT,
.scheme_func = nm_setting_802_1x_get_phase2_ca_cert_scheme,
.format_func = NULL,
.path_func = nm_setting_802_1x_get_phase2_ca_cert_path,
.blob_func = nm_setting_802_1x_get_phase2_ca_cert_blob,
.uri_func = nm_setting_802_1x_get_phase2_ca_cert_uri,
.passwd_func = nm_setting_802_1x_get_phase2_ca_cert_password,
.pwflag_func = nm_setting_802_1x_get_phase2_ca_cert_password_flags,
.file_suffix = "inner-ca-cert",
},
[NM_SETTING_802_1X_SCHEME_TYPE_CLIENT_CERT] = {
.setting_key = NM_SETTING_802_1X_CLIENT_CERT,
.scheme_func = nm_setting_802_1x_get_client_cert_scheme,
.format_func = NULL,
.path_func = nm_setting_802_1x_get_client_cert_path,
.blob_func = nm_setting_802_1x_get_client_cert_blob,
.uri_func = nm_setting_802_1x_get_client_cert_uri,
.passwd_func = nm_setting_802_1x_get_client_cert_password,
.pwflag_func = nm_setting_802_1x_get_client_cert_password_flags,
.file_suffix = "client-cert",
},
[NM_SETTING_802_1X_SCHEME_TYPE_PHASE2_CLIENT_CERT] = {
.setting_key = NM_SETTING_802_1X_PHASE2_CLIENT_CERT,
.scheme_func = nm_setting_802_1x_get_phase2_client_cert_scheme,
.format_func = NULL,
.path_func = nm_setting_802_1x_get_phase2_client_cert_path,
.blob_func = nm_setting_802_1x_get_phase2_client_cert_blob,
.uri_func = nm_setting_802_1x_get_phase2_client_cert_uri,
.passwd_func = nm_setting_802_1x_get_phase2_client_cert_password,
.pwflag_func = nm_setting_802_1x_get_phase2_client_cert_password_flags,
.file_suffix = "inner-client-cert",
},
[NM_SETTING_802_1X_SCHEME_TYPE_PRIVATE_KEY] = {
.setting_key = NM_SETTING_802_1X_PRIVATE_KEY,
.scheme_func = nm_setting_802_1x_get_private_key_scheme,
.format_func = nm_setting_802_1x_get_private_key_format,
.path_func = nm_setting_802_1x_get_private_key_path,
.blob_func = nm_setting_802_1x_get_private_key_blob,
.uri_func = nm_setting_802_1x_get_private_key_uri,
.passwd_func = nm_setting_802_1x_get_private_key_password,
.pwflag_func = nm_setting_802_1x_get_private_key_password_flags,
.file_suffix = "private-key",
},
[NM_SETTING_802_1X_SCHEME_TYPE_PHASE2_PRIVATE_KEY] = {
.setting_key = NM_SETTING_802_1X_PHASE2_PRIVATE_KEY,
.scheme_func = nm_setting_802_1x_get_phase2_private_key_scheme,
.format_func = nm_setting_802_1x_get_phase2_private_key_format,
.path_func = nm_setting_802_1x_get_phase2_private_key_path,
.blob_func = nm_setting_802_1x_get_phase2_private_key_blob,
.uri_func = nm_setting_802_1x_get_phase2_private_key_uri,
.passwd_func = nm_setting_802_1x_get_phase2_private_key_password,
.pwflag_func = nm_setting_802_1x_get_phase2_private_key_password_flags,
.file_suffix = "inner-private-key",
},
[NM_SETTING_802_1X_SCHEME_TYPE_UNKNOWN] = { NULL },
};
/*****************************************************************************/
const NMMetaSettingInfo nm_meta_setting_infos[] = {
2018-05-22 17:11:30 +02:00
[NM_META_SETTING_TYPE_6LOWPAN] = {
.meta_type = NM_META_SETTING_TYPE_6LOWPAN,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
2018-05-22 17:11:30 +02:00
.setting_name = NM_SETTING_6LOWPAN_SETTING_NAME,
.get_setting_gtype = nm_setting_6lowpan_get_type,
},
[NM_META_SETTING_TYPE_802_1X] = {
.meta_type = NM_META_SETTING_TYPE_802_1X,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_AUX,
.setting_name = NM_SETTING_802_1X_SETTING_NAME,
.get_setting_gtype = nm_setting_802_1x_get_type,
},
[NM_META_SETTING_TYPE_ADSL] = {
.meta_type = NM_META_SETTING_TYPE_ADSL,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_ADSL_SETTING_NAME,
.get_setting_gtype = nm_setting_adsl_get_type,
},
[NM_META_SETTING_TYPE_BLUETOOTH] = {
.meta_type = NM_META_SETTING_TYPE_BLUETOOTH,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_NON_BASE,
.setting_name = NM_SETTING_BLUETOOTH_SETTING_NAME,
.get_setting_gtype = nm_setting_bluetooth_get_type,
},
[NM_META_SETTING_TYPE_BOND] = {
.meta_type = NM_META_SETTING_TYPE_BOND,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_BOND_SETTING_NAME,
.get_setting_gtype = nm_setting_bond_get_type,
},
[NM_META_SETTING_TYPE_BRIDGE] = {
.meta_type = NM_META_SETTING_TYPE_BRIDGE,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_BRIDGE_SETTING_NAME,
.get_setting_gtype = nm_setting_bridge_get_type,
},
[NM_META_SETTING_TYPE_BRIDGE_PORT] = {
.meta_type = NM_META_SETTING_TYPE_BRIDGE_PORT,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_AUX,
.setting_name = NM_SETTING_BRIDGE_PORT_SETTING_NAME,
.get_setting_gtype = nm_setting_bridge_port_get_type,
},
[NM_META_SETTING_TYPE_CDMA] = {
.meta_type = NM_META_SETTING_TYPE_CDMA,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_CDMA_SETTING_NAME,
.get_setting_gtype = nm_setting_cdma_get_type,
},
[NM_META_SETTING_TYPE_CONNECTION] = {
.meta_type = NM_META_SETTING_TYPE_CONNECTION,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_CONNECTION,
.setting_name = NM_SETTING_CONNECTION_SETTING_NAME,
.get_setting_gtype = nm_setting_connection_get_type,
},
[NM_META_SETTING_TYPE_DCB] = {
.meta_type = NM_META_SETTING_TYPE_DCB,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_AUX,
.setting_name = NM_SETTING_DCB_SETTING_NAME,
.get_setting_gtype = nm_setting_dcb_get_type,
},
2017-03-26 14:30:17 +02:00
[NM_META_SETTING_TYPE_DUMMY] = {
.meta_type = NM_META_SETTING_TYPE_DUMMY,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_DUMMY_SETTING_NAME,
2017-03-26 14:30:17 +02:00
.get_setting_gtype = nm_setting_dummy_get_type,
},
[NM_META_SETTING_TYPE_GENERIC] = {
.meta_type = NM_META_SETTING_TYPE_GENERIC,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_GENERIC_SETTING_NAME,
.get_setting_gtype = nm_setting_generic_get_type,
},
[NM_META_SETTING_TYPE_GSM] = {
.meta_type = NM_META_SETTING_TYPE_GSM,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_GSM_SETTING_NAME,
.get_setting_gtype = nm_setting_gsm_get_type,
},
[NM_META_SETTING_TYPE_INFINIBAND] = {
.meta_type = NM_META_SETTING_TYPE_INFINIBAND,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_INFINIBAND_SETTING_NAME,
.get_setting_gtype = nm_setting_infiniband_get_type,
},
[NM_META_SETTING_TYPE_IP4_CONFIG] = {
.meta_type = NM_META_SETTING_TYPE_IP4_CONFIG,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_IP,
.setting_name = NM_SETTING_IP4_CONFIG_SETTING_NAME,
.get_setting_gtype = nm_setting_ip4_config_get_type,
},
[NM_META_SETTING_TYPE_IP6_CONFIG] = {
.meta_type = NM_META_SETTING_TYPE_IP6_CONFIG,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_IP,
.setting_name = NM_SETTING_IP6_CONFIG_SETTING_NAME,
.get_setting_gtype = nm_setting_ip6_config_get_type,
},
[NM_META_SETTING_TYPE_IP_TUNNEL] = {
.meta_type = NM_META_SETTING_TYPE_IP_TUNNEL,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_IP_TUNNEL_SETTING_NAME,
.get_setting_gtype = nm_setting_ip_tunnel_get_type,
},
[NM_META_SETTING_TYPE_MACSEC] = {
.meta_type = NM_META_SETTING_TYPE_MACSEC,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_MACSEC_SETTING_NAME,
.get_setting_gtype = nm_setting_macsec_get_type,
},
[NM_META_SETTING_TYPE_MACVLAN] = {
.meta_type = NM_META_SETTING_TYPE_MACVLAN,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_MACVLAN_SETTING_NAME,
.get_setting_gtype = nm_setting_macvlan_get_type,
},
[NM_META_SETTING_TYPE_OLPC_MESH] = {
.meta_type = NM_META_SETTING_TYPE_OLPC_MESH,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_OLPC_MESH_SETTING_NAME,
.get_setting_gtype = nm_setting_olpc_mesh_get_type,
},
[NM_META_SETTING_TYPE_OVS_BRIDGE] = {
.meta_type = NM_META_SETTING_TYPE_OVS_BRIDGE,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_OVS_BRIDGE_SETTING_NAME,
.get_setting_gtype = nm_setting_ovs_bridge_get_type,
},
[NM_META_SETTING_TYPE_OVS_INTERFACE] = {
.meta_type = NM_META_SETTING_TYPE_OVS_INTERFACE,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_OVS_INTERFACE_SETTING_NAME,
.get_setting_gtype = nm_setting_ovs_interface_get_type,
},
[NM_META_SETTING_TYPE_OVS_PATCH] = {
.meta_type = NM_META_SETTING_TYPE_OVS_PATCH,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_OVS_PATCH_SETTING_NAME,
.get_setting_gtype = nm_setting_ovs_patch_get_type,
},
[NM_META_SETTING_TYPE_OVS_PORT] = {
.meta_type = NM_META_SETTING_TYPE_OVS_PORT,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_OVS_PORT_SETTING_NAME,
.get_setting_gtype = nm_setting_ovs_port_get_type,
},
[NM_META_SETTING_TYPE_PPPOE] = {
.meta_type = NM_META_SETTING_TYPE_PPPOE,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_AUX,
.setting_name = NM_SETTING_PPPOE_SETTING_NAME,
.get_setting_gtype = nm_setting_pppoe_get_type,
},
[NM_META_SETTING_TYPE_PPP] = {
.meta_type = NM_META_SETTING_TYPE_PPP,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_AUX,
.setting_name = NM_SETTING_PPP_SETTING_NAME,
.get_setting_gtype = nm_setting_ppp_get_type,
},
[NM_META_SETTING_TYPE_PROXY] = {
.meta_type = NM_META_SETTING_TYPE_PROXY,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_IP,
.setting_name = NM_SETTING_PROXY_SETTING_NAME,
.get_setting_gtype = nm_setting_proxy_get_type,
},
[NM_META_SETTING_TYPE_SERIAL] = {
.meta_type = NM_META_SETTING_TYPE_SERIAL,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_AUX,
.setting_name = NM_SETTING_SERIAL_SETTING_NAME,
.get_setting_gtype = nm_setting_serial_get_type,
},
[NM_META_SETTING_TYPE_SRIOV] = {
.meta_type = NM_META_SETTING_TYPE_SRIOV,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_AUX,
.setting_name = NM_SETTING_SRIOV_SETTING_NAME,
.get_setting_gtype = nm_setting_sriov_get_type,
},
[NM_META_SETTING_TYPE_TC_CONFIG] = {
.meta_type = NM_META_SETTING_TYPE_TC_CONFIG,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_IP,
.setting_name = NM_SETTING_TC_CONFIG_SETTING_NAME,
.get_setting_gtype = nm_setting_tc_config_get_type,
},
[NM_META_SETTING_TYPE_TEAM] = {
.meta_type = NM_META_SETTING_TYPE_TEAM,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_TEAM_SETTING_NAME,
.get_setting_gtype = nm_setting_team_get_type,
},
[NM_META_SETTING_TYPE_TEAM_PORT] = {
.meta_type = NM_META_SETTING_TYPE_TEAM_PORT,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_AUX,
.setting_name = NM_SETTING_TEAM_PORT_SETTING_NAME,
.get_setting_gtype = nm_setting_team_port_get_type,
},
[NM_META_SETTING_TYPE_TUN] = {
.meta_type = NM_META_SETTING_TYPE_TUN,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_TUN_SETTING_NAME,
.get_setting_gtype = nm_setting_tun_get_type,
},
[NM_META_SETTING_TYPE_USER] = {
.meta_type = NM_META_SETTING_TYPE_USER,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_USER,
.setting_name = NM_SETTING_USER_SETTING_NAME,
.get_setting_gtype = nm_setting_user_get_type,
},
[NM_META_SETTING_TYPE_VLAN] = {
.meta_type = NM_META_SETTING_TYPE_VLAN,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_VLAN_SETTING_NAME,
.get_setting_gtype = nm_setting_vlan_get_type,
},
[NM_META_SETTING_TYPE_VPN] = {
.meta_type = NM_META_SETTING_TYPE_VPN,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_VPN_SETTING_NAME,
.get_setting_gtype = nm_setting_vpn_get_type,
},
[NM_META_SETTING_TYPE_VXLAN] = {
.meta_type = NM_META_SETTING_TYPE_VXLAN,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_VXLAN_SETTING_NAME,
.get_setting_gtype = nm_setting_vxlan_get_type,
},
[NM_META_SETTING_TYPE_WIMAX] = {
.meta_type = NM_META_SETTING_TYPE_WIMAX,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_WIMAX_SETTING_NAME,
.get_setting_gtype = nm_setting_wimax_get_type,
},
[NM_META_SETTING_TYPE_WIRED] = {
.meta_type = NM_META_SETTING_TYPE_WIRED,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_WIRED_SETTING_NAME,
.get_setting_gtype = nm_setting_wired_get_type,
},
[NM_META_SETTING_TYPE_WIRELESS] = {
.meta_type = NM_META_SETTING_TYPE_WIRELESS,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
.setting_name = NM_SETTING_WIRELESS_SETTING_NAME,
.get_setting_gtype = nm_setting_wireless_get_type,
},
[NM_META_SETTING_TYPE_WIRELESS_SECURITY] = {
.meta_type = NM_META_SETTING_TYPE_WIRELESS_SECURITY,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_AUX,
.setting_name = NM_SETTING_WIRELESS_SECURITY_SETTING_NAME,
.get_setting_gtype = nm_setting_wireless_security_get_type,
},
2018-03-09 18:21:10 +01:00
[NM_META_SETTING_TYPE_WPAN] = {
.meta_type = NM_META_SETTING_TYPE_WPAN,
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
.setting_priority = NM_SETTING_PRIORITY_HW_BASE,
2018-03-09 18:21:10 +01:00
.setting_name = NM_SETTING_WPAN_SETTING_NAME,
.get_setting_gtype = nm_setting_wpan_get_type,
},
[NM_META_SETTING_TYPE_UNKNOWN] = {
.meta_type = NM_META_SETTING_TYPE_UNKNOWN,
},
};
const NMMetaSettingInfo *
nm_meta_setting_infos_by_name (const char *name)
{
int i;
if (name) {
for (i = 0; i < _NM_META_SETTING_TYPE_NUM; i++) {
if (nm_streq (nm_meta_setting_infos[i].setting_name, name))
return &nm_meta_setting_infos[i];
}
}
return NULL;
}
const NMMetaSettingInfo *
nm_meta_setting_infos_by_gtype (GType gtype)
{
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
#if ((NETWORKMANAGER_COMPILATION) & NM_NETWORKMANAGER_COMPILATION_WITH_LIBNM_CORE_INTERNAL)
nm_auto_unref_gtypeclass GTypeClass *gtypeclass_unref = NULL;
GTypeClass *gtypeclass;
NMSettingClass *klass;
if (!g_type_is_a (gtype, NM_TYPE_SETTING))
goto out_none;
gtypeclass = g_type_class_peek (gtype);
if (!gtypeclass)
gtypeclass = gtypeclass_unref = g_type_class_ref (gtype);
nm_assert (NM_IS_SETTING_CLASS (gtypeclass));
klass = (NMSettingClass *) gtypeclass;
if (!klass->setting_info)
goto out_none;
nm_assert (klass->setting_info->get_setting_gtype);
nm_assert (klass->setting_info->get_setting_gtype () == gtype);
return klass->setting_info;
out_none:
#if NM_MORE_ASSERTS > 10
{
int i;
/* this might hint to a bug, but it would be expected for NM_TYPE_SETTING
* and NM_TYPE_SETTING_IP_CONFIG.
*
* Assert that we didn't lookup for a gtype, which we would expect to find.
* An assertion failure here, hints to a bug in nm_setting_*_class_init().
*/
for (i = 0; i < _NM_META_SETTING_TYPE_NUM; i++)
nm_assert (nm_meta_setting_infos[i].get_setting_gtype () != gtype);
}
#endif
return NULL;
#else
guint i;
for (i = 0; i < _NM_META_SETTING_TYPE_NUM; i++) {
if (nm_meta_setting_infos[i].get_setting_gtype () == gtype)
return &nm_meta_setting_infos[i];
}
return NULL;
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
#endif
}
/*****************************************************************************/