NetworkManager/libnm-core/nm-setting-private.h

195 lines
8.4 KiB
C
Raw Normal View History

/* -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
/*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA.
*
* Copyright 2011 Red Hat, Inc.
*/
#ifndef __NM_SETTING_PRIVATE_H__
#define __NM_SETTING_PRIVATE_H__
#if !((NETWORKMANAGER_COMPILATION) & NM_NETWORKMANAGER_COMPILATION_WITH_LIBNM_CORE_PRIVATE)
#error Cannot use this header.
#endif
#include "nm-setting.h"
#include "nm-connection.h"
#include "nm-core-enum-types.h"
#include "nm-core-internal.h"
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
/*****************************************************************************/
NMSettingPriority _nm_setting_get_base_type_priority (NMSetting *setting);
NMSettingPriority _nm_setting_type_get_base_type_priority (GType type);
int _nm_setting_compare_priority (gconstpointer a, gconstpointer b);
libnm: use NMMetaSettingInfo for tracking setting priority Previously, each (non abstract) NMSetting class had to register its name and priority via _nm_register_setting(). Note, that libnm-core.la already links against "nm-meta-setting.c", which also redundantly keeps track of the settings name and gtype as well. Re-use NMMetaSettingInfo also in libnm-core.la, to track this meta data. The goal is to get rid of private data structures that track meta data about NMSetting classes. In this case, "registered_settings" hash. Instead, we should have one place where all this meta data is tracked. This was, it is also accessible as internal API, which can be useful (for keyfile). Note that NMSettingClass has some overlap with NMMetaSettingInfo. One difference is, that NMMetaSettingInfo is const, while NMSettingClass is only initialized during the class_init() method. Appart from that, it's mostly a matter of taste, whether we attach meta data to NMSettingClass, to NMMetaSettingInfo, or to a static-array indexed by NMMetaSettingType. Note, that previously, _nm_register_setting() was private API. That means, no user could subclass a functioning NMSetting instance. The same is still true: NMMetaSettingInfo is internal API and users cannot access it to create their own NMSetting subclasses. But that is almost desired. libnm is not designed, to be extensible via subclassing, nor is it clear why that would be a useful thing to do. One day, we should remove the NMSetting and NMSettingClass definitions from public headers. Their only use is subclassing the types, which however does not work. While libnm-core was linking already against nm-meta-setting.c, nm_meta_setting_infos was unreferenced. So, this change increases the binary size of libnm and NetworkManager (1032 bytes). Note however that roughly the same information was previously allocated at runtime.
2018-07-27 14:08:14 +02:00
/*****************************************************************************/
typedef enum NMSettingUpdateSecretResult {
NM_SETTING_UPDATE_SECRET_ERROR = FALSE,
NM_SETTING_UPDATE_SECRET_SUCCESS_MODIFIED = TRUE,
NM_SETTING_UPDATE_SECRET_SUCCESS_UNCHANGED = 2,
} NMSettingUpdateSecretResult;
NMSettingUpdateSecretResult _nm_setting_update_secrets (NMSetting *setting,
GVariant *secrets,
GError **error);
gboolean _nm_setting_clear_secrets (NMSetting *setting);
gboolean _nm_setting_clear_secrets_with_flags (NMSetting *setting,
NMSettingClearSecretsWithFlagsFn func,
gpointer user_data);
/* The property of the #NMSetting should be considered during comparisons that
* use the %NM_SETTING_COMPARE_FLAG_INFERRABLE flag. Properties that don't have
* this flag, are ignored when doing an infrerrable comparison. This flag should
* be set on all properties that are read from the kernel or the system when a
* connection is generated. eg, IP addresses/routes can be read from the
* kernel, but the 'autoconnect' property cannot, so
* %NM_SETTING_IP4_CONFIG_ADDRESSES gets the INFERRABLE flag, but
* %NM_SETTING_CONNECTION_AUTOCONNECT would not.
*
* This flag should not be used with properties where the default cannot be
* read separately from the current value, like MTU or wired duplex mode.
*/
#define NM_SETTING_PARAM_INFERRABLE (1 << (4 + G_PARAM_USER_SHIFT))
/* This is a legacy property, which clients should not send to the daemon. */
#define NM_SETTING_PARAM_LEGACY (1 << (5 + G_PARAM_USER_SHIFT))
/* When a connection is active and gets modified, usually the change
* to the settings-connection does not propagate automatically to the
* applied-connection of the device. For certain properties like the
* firewall zone and the metered property, this is different.
*
* Such fields can be ignored during nm_connection_compare() with the
* NMSettingCompareFlag NM_SETTING_COMPARE_FLAG_IGNORE_REAPPLY_IMMEDIATELY.
*/
#define NM_SETTING_PARAM_REAPPLY_IMMEDIATELY (1 << (6 + G_PARAM_USER_SHIFT))
libnm: add generic-data for implementing NMSetting Add a new way how NMSetting subclasses can be implemented. Currently, most NMSetting implementations realize all their properties via GObject properties. That has some downsides: - the biggest one, is the large effort to add new properties. Most of them are implemented on a one-by-one basis and they come with additional API (like native getter functions). It makes it cumbersome to add more properties. - for certain properties, it's hard to encode them entirely in a GObject property. That results in unusable API like NM_SETTING_IP_CONFIG_ADDRESSES, NM_SETTING_BOND_OPTIONS, NM_SETTING_USER_DATA. These complex valued properties only exist, because we currently always need GObject properties to even implement simple functionality. For example, nm_setting_duplicate() is entirely implemented via nm_setting_enumerate_values(), which can only iterate GObject properies. There is no reason why this is necessary. Note also how nmcli badly handles bond options and VPN data. That is only a shortcoming of nmcli and wouldn't need to be that way. But it happend, because we didn't keep an open mind that settings might be more than just accessing GObject properties. - a major point of NMSetting is to convert to/from a GVariant from the D-Bus API. As NMSetting needs to squeeze all values into the static GObject structure, there is no place to encode invalid or unknown properties. Optimally, _nm_setting_new_from_dbus() does not loose any information and a subsequent _nm_setting_to_dbus() can restore the original variant. That is interesting, because we want that an older libnm client can talk to a newer NetworkManager version. The client needs to handle unknown properties gracefully to stay forward compatible. However, it also should not just drop the properties on the floor. Note however, optimally we want that nm_setting_verify() still can reject settings that have such unknown/invalid values. So, it should be possible to create an NMSetting instance without error or loosing information. But verify() should be usable to identify such settings as invalid. They also have a few upsides. - libnm is heavily oriented around GObject. So, we generate our nm-settings manual based on the gtk-doc. Note however, how we fail to generate a useful manual for bond.options. Also note, that there is no reason we couldn't generate great documentation, even if the properties are not GObject properties. - GObject properties do give some functionality like meta-data, data binding and notification. However, the meta-data is not sufficient on its own. Note how keyfile and nmcli need extensive descriptor tables on top of GObject properties, to make this useful. Note how GObject notifications for NMSetting instances are usually not useful, aside for data binding like nmtui does. Also note how NMSettingBond already follows a different paradigm than using GObject properties. Nowdays, NMSettingBond is considered a mistake (related bug rh#1032808). Many ideas of NMSettingBond are flawed, like exposing an inferiour API that reduces everything to a string hash. Also, it only implemented the options hash inside NMSettingBond. That means, if we would consider this a good style, we would have to duplicate this approach in each new setting implementation. Add a new style to track data for NMSetting subclasses. It keeps an internal hash table with all GVariant properies. Also, the functionality is hooked into NMSetting base class, so all future subclasses that follow this way, can benefit from this. This approach has a few similiarties with NMSettingBond, but avoids its flaws. With this, we also no longer need GObject properties (if we would also implement generating useful documentation based on non-gkt-doc). They may be added as accessors if they are useful, but there is no need for them. Also, handling the properties as a hash of variants invites for a more generic approach when handling them. While we still could add accessors that operate on a one-by-one bases, this leads to a more generic usage where we apply common functionality to a set of properties. Also, this is for the moment entirely internal and an implementation detail. It's entirely up to the NMSetting subclass to make use of this new style. Also, there are little hooks for the subclass available. If they turn out to be necessary, they might be added. However, for the moment, the functionality is restricted to what is useful and necessary.
2018-07-27 10:05:40 +02:00
#define NM_SETTING_PARAM_GENDATA_BACKED (1 << (7 + G_PARAM_USER_SHIFT))
GVariant *_nm_setting_get_deprecated_virtual_interface_name (const NMSettInfoSetting *sett_info,
guint property_idx,
NMConnection *connection,
NMSetting *setting,
NMConnectionSerializationFlags flags);
NMSettingVerifyResult _nm_setting_verify (NMSetting *setting,
NMConnection *connection,
GError **error);
gboolean _nm_setting_verify_secret_string (const char *str,
const char *setting_name,
const char *property,
GError **error);
gboolean _nm_setting_slave_type_is_valid (const char *slave_type, const char **out_port_type);
GVariant *_nm_setting_to_dbus (NMSetting *setting,
NMConnection *connection,
NMConnectionSerializationFlags flags);
NMSetting *_nm_setting_new_from_dbus (GType setting_type,
GVariant *setting_dict,
GVariant *connection_dict,
NMSettingParseFlags parse_flags,
GError **error);
libnm: rework setting metadata for property handling NMSetting internally already tracked a list of all proper GObject properties and D-Bus-only properties. Rework the tracking of the list, so that: - instead of attaching the data to the GType of the setting via g_type_set_qdata(), it is tracked in a static array indexed by NMMetaSettingType. This allows to find the setting-data by simple pointer arithmetic, instead of taking a look and iterating (like g_type_set_qdata() does). Note, that this is still thread safe, because the static table entry is initialized in the class-init function with _nm_setting_class_commit(). And it only accessed by following a NMSettingClass instance, thus the class constructor already ran (maybe not for all setting classes, but for the particular one that we look up). I think this makes initialization of the metadata simpler to understand. Previously, in a first phase each class would attach the metadata to the GType as setting_property_overrides_quark(). Then during nm_setting_class_ensure_properties() it would merge them and set as setting_properties_quark(). Now, during the first phase, we only incrementally build a properties_override GArray, which we finally hand over during nm_setting_class_commit(). - sort the property infos by name and do binary search. Also expose this meta data types as internal API in nm-setting-private.h. While not accessed yet, it can prove beneficial, to have direct (internal) access to these structures. Also, rename NMSettingProperty to NMSettInfoProperty to use a distinct naming scheme. We already have 40+ subclasses of NMSetting that are called NMSetting*. Likewise, NMMetaSetting* is heavily used already. So, choose a new, distinct name.
2018-07-28 15:26:03 +02:00
/*****************************************************************************/
static inline GArray *
_nm_sett_info_property_override_create_array (void)
{
return g_array_new (FALSE, FALSE, sizeof (NMSettInfoProperty));
}
GArray *_nm_sett_info_property_override_create_array_ip_config (void);
void _nm_setting_class_commit_full (NMSettingClass *setting_class,
NMMetaSettingType meta_type,
const NMSettInfoSettDetail *detail,
GArray *properties_override);
static inline void
_nm_setting_class_commit (NMSettingClass *setting_class,
NMMetaSettingType meta_type)
{
_nm_setting_class_commit_full (setting_class, meta_type, NULL, NULL);
}
libnm: add generic-data for implementing NMSetting Add a new way how NMSetting subclasses can be implemented. Currently, most NMSetting implementations realize all their properties via GObject properties. That has some downsides: - the biggest one, is the large effort to add new properties. Most of them are implemented on a one-by-one basis and they come with additional API (like native getter functions). It makes it cumbersome to add more properties. - for certain properties, it's hard to encode them entirely in a GObject property. That results in unusable API like NM_SETTING_IP_CONFIG_ADDRESSES, NM_SETTING_BOND_OPTIONS, NM_SETTING_USER_DATA. These complex valued properties only exist, because we currently always need GObject properties to even implement simple functionality. For example, nm_setting_duplicate() is entirely implemented via nm_setting_enumerate_values(), which can only iterate GObject properies. There is no reason why this is necessary. Note also how nmcli badly handles bond options and VPN data. That is only a shortcoming of nmcli and wouldn't need to be that way. But it happend, because we didn't keep an open mind that settings might be more than just accessing GObject properties. - a major point of NMSetting is to convert to/from a GVariant from the D-Bus API. As NMSetting needs to squeeze all values into the static GObject structure, there is no place to encode invalid or unknown properties. Optimally, _nm_setting_new_from_dbus() does not loose any information and a subsequent _nm_setting_to_dbus() can restore the original variant. That is interesting, because we want that an older libnm client can talk to a newer NetworkManager version. The client needs to handle unknown properties gracefully to stay forward compatible. However, it also should not just drop the properties on the floor. Note however, optimally we want that nm_setting_verify() still can reject settings that have such unknown/invalid values. So, it should be possible to create an NMSetting instance without error or loosing information. But verify() should be usable to identify such settings as invalid. They also have a few upsides. - libnm is heavily oriented around GObject. So, we generate our nm-settings manual based on the gtk-doc. Note however, how we fail to generate a useful manual for bond.options. Also note, that there is no reason we couldn't generate great documentation, even if the properties are not GObject properties. - GObject properties do give some functionality like meta-data, data binding and notification. However, the meta-data is not sufficient on its own. Note how keyfile and nmcli need extensive descriptor tables on top of GObject properties, to make this useful. Note how GObject notifications for NMSetting instances are usually not useful, aside for data binding like nmtui does. Also note how NMSettingBond already follows a different paradigm than using GObject properties. Nowdays, NMSettingBond is considered a mistake (related bug rh#1032808). Many ideas of NMSettingBond are flawed, like exposing an inferiour API that reduces everything to a string hash. Also, it only implemented the options hash inside NMSettingBond. That means, if we would consider this a good style, we would have to duplicate this approach in each new setting implementation. Add a new style to track data for NMSetting subclasses. It keeps an internal hash table with all GVariant properies. Also, the functionality is hooked into NMSetting base class, so all future subclasses that follow this way, can benefit from this. This approach has a few similiarties with NMSettingBond, but avoids its flaws. With this, we also no longer need GObject properties (if we would also implement generating useful documentation based on non-gkt-doc). They may be added as accessors if they are useful, but there is no need for them. Also, handling the properties as a hash of variants invites for a more generic approach when handling them. While we still could add accessors that operate on a one-by-one bases, this leads to a more generic usage where we apply common functionality to a set of properties. Also, this is for the moment entirely internal and an implementation detail. It's entirely up to the NMSetting subclass to make use of this new style. Also, there are little hooks for the subclass available. If they turn out to be necessary, they might be added. However, for the moment, the functionality is restricted to what is useful and necessary.
2018-07-27 10:05:40 +02:00
#define NM_SETT_INFO_SETT_GENDATA(...) \
({ \
static const NMSettInfoSettGendata _g = { \
__VA_ARGS__ \
}; \
\
&_g; \
})
libnm: rework setting metadata for property handling NMSetting internally already tracked a list of all proper GObject properties and D-Bus-only properties. Rework the tracking of the list, so that: - instead of attaching the data to the GType of the setting via g_type_set_qdata(), it is tracked in a static array indexed by NMMetaSettingType. This allows to find the setting-data by simple pointer arithmetic, instead of taking a look and iterating (like g_type_set_qdata() does). Note, that this is still thread safe, because the static table entry is initialized in the class-init function with _nm_setting_class_commit(). And it only accessed by following a NMSettingClass instance, thus the class constructor already ran (maybe not for all setting classes, but for the particular one that we look up). I think this makes initialization of the metadata simpler to understand. Previously, in a first phase each class would attach the metadata to the GType as setting_property_overrides_quark(). Then during nm_setting_class_ensure_properties() it would merge them and set as setting_properties_quark(). Now, during the first phase, we only incrementally build a properties_override GArray, which we finally hand over during nm_setting_class_commit(). - sort the property infos by name and do binary search. Also expose this meta data types as internal API in nm-setting-private.h. While not accessed yet, it can prove beneficial, to have direct (internal) access to these structures. Also, rename NMSettingProperty to NMSettInfoProperty to use a distinct naming scheme. We already have 40+ subclasses of NMSetting that are called NMSetting*. Likewise, NMMetaSetting* is heavily used already. So, choose a new, distinct name.
2018-07-28 15:26:03 +02:00
#define NM_SETT_INFO_SETT_DETAIL(...) \
(&((const NMSettInfoSettDetail) { \
__VA_ARGS__ \
}))
#define NM_SETT_INFO_PROPERTY(...) \
(&((const NMSettInfoProperty) { \
__VA_ARGS__ \
}))
void _properties_override_add_struct (GArray *properties_override,
const NMSettInfoProperty *prop_info);
void _properties_override_add__helper (GArray *properties_override,
NMSettInfoProperty *prop_info);
#define _properties_override_add(properties_override, \
...) \
(_properties_override_add_struct (properties_override, \
NM_SETT_INFO_PROPERTY (__VA_ARGS__)))
void _properties_override_add_dbus_only (GArray *properties_override,
const char *property_name,
const GVariantType *dbus_type,
NMSettingPropertySynthFunc synth_func,
NMSettingPropertySetFunc set_func);
void _properties_override_add_override (GArray *properties_override,
GParamSpec *param_spec,
const GVariantType *dbus_type,
NMSettingPropertyGetFunc get_func,
NMSettingPropertySetFunc set_func,
NMSettingPropertyNotSetFunc not_set_func);
void _properties_override_add_transform (GArray *properties_override,
GParamSpec *param_spec,
const GVariantType *dbus_type,
NMSettingPropertyTransformToFunc to_dbus,
NMSettingPropertyTransformFromFunc from_dbus);
/*****************************************************************************/
gboolean _nm_setting_use_legacy_property (NMSetting *setting,
GVariant *connection_dict,
const char *legacy_property,
const char *new_property);
GPtrArray *_nm_setting_need_secrets (NMSetting *setting);
libnm: rework setting metadata for property handling NMSetting internally already tracked a list of all proper GObject properties and D-Bus-only properties. Rework the tracking of the list, so that: - instead of attaching the data to the GType of the setting via g_type_set_qdata(), it is tracked in a static array indexed by NMMetaSettingType. This allows to find the setting-data by simple pointer arithmetic, instead of taking a look and iterating (like g_type_set_qdata() does). Note, that this is still thread safe, because the static table entry is initialized in the class-init function with _nm_setting_class_commit(). And it only accessed by following a NMSettingClass instance, thus the class constructor already ran (maybe not for all setting classes, but for the particular one that we look up). I think this makes initialization of the metadata simpler to understand. Previously, in a first phase each class would attach the metadata to the GType as setting_property_overrides_quark(). Then during nm_setting_class_ensure_properties() it would merge them and set as setting_properties_quark(). Now, during the first phase, we only incrementally build a properties_override GArray, which we finally hand over during nm_setting_class_commit(). - sort the property infos by name and do binary search. Also expose this meta data types as internal API in nm-setting-private.h. While not accessed yet, it can prove beneficial, to have direct (internal) access to these structures. Also, rename NMSettingProperty to NMSettInfoProperty to use a distinct naming scheme. We already have 40+ subclasses of NMSetting that are called NMSetting*. Likewise, NMMetaSetting* is heavily used already. So, choose a new, distinct name.
2018-07-28 15:26:03 +02:00
/*****************************************************************************/
#endif /* NM_SETTING_PRIVATE_H */