NetworkManager/src/tests/test-utils.c

135 lines
6 KiB
C
Raw Normal View History

core: add support for RFC7217 stable privacy addressing RFC7217 introduces an alternative mechanism for creating addresses during stateless IPv6 address configuration. It's supposed to create addresses whose host part stays stable in a particular network but changes when the hosts enters another network to mitigate possibility of tracking the host movement. It can be used alongside RFC 4941 privacy extensions (temporary addresses) and replaces the use of RFC 4862 interface identifiers. The address creation mode is controlld by ip6.addr_gen_mode property (ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64", defaulting to "eui-64" if unspecified. The host part of an address is computed by hashing a system-specific secret salted with various stable values that identify the connection with a secure hash algorithm: RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) For NetworkManager we use these parameters: * F() SHA256 hash function. * Prefix This is a network part of the /64 address * Net_Iface We use the interface name (e.g. "eth0"). This ensures the address won't change with the change of interface hardware. * Network_ID We use the connection UUID here. This ensures the salt is different for wireless networks with a different SSID as suggested by RFC7217. * DAD_Counter A per-address counter that increases with each DAD failure. * secret_key We store the secret key in /var/lib/NetworkManager/secret_key. If it's shorter than 128 bits then it's rejected. If the file is not present we initialize it by fetching 256 pseudo-random bits from /dev/urandom on first use. Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation and may change in future. Neither parameter is currently configurable.
2015-10-03 19:44:27 +02:00
/* -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Copyright (C) 2015 Red Hat, Inc.
*
*/
#include "nm-default.h"
core: add support for RFC7217 stable privacy addressing RFC7217 introduces an alternative mechanism for creating addresses during stateless IPv6 address configuration. It's supposed to create addresses whose host part stays stable in a particular network but changes when the hosts enters another network to mitigate possibility of tracking the host movement. It can be used alongside RFC 4941 privacy extensions (temporary addresses) and replaces the use of RFC 4862 interface identifiers. The address creation mode is controlld by ip6.addr_gen_mode property (ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64", defaulting to "eui-64" if unspecified. The host part of an address is computed by hashing a system-specific secret salted with various stable values that identify the connection with a secure hash algorithm: RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) For NetworkManager we use these parameters: * F() SHA256 hash function. * Prefix This is a network part of the /64 address * Net_Iface We use the interface name (e.g. "eth0"). This ensures the address won't change with the change of interface hardware. * Network_ID We use the connection UUID here. This ensures the salt is different for wireless networks with a different SSID as suggested by RFC7217. * DAD_Counter A per-address counter that increases with each DAD failure. * secret_key We store the secret key in /var/lib/NetworkManager/secret_key. If it's shorter than 128 bits then it's rejected. If the file is not present we initialize it by fetching 256 pseudo-random bits from /dev/urandom on first use. Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation and may change in future. Neither parameter is currently configurable.
2015-10-03 19:44:27 +02:00
#include <string.h>
#include <errno.h>
#include <arpa/inet.h>
#include "nm-test-utils-core.h"
core: add support for RFC7217 stable privacy addressing RFC7217 introduces an alternative mechanism for creating addresses during stateless IPv6 address configuration. It's supposed to create addresses whose host part stays stable in a particular network but changes when the hosts enters another network to mitigate possibility of tracking the host movement. It can be used alongside RFC 4941 privacy extensions (temporary addresses) and replaces the use of RFC 4862 interface identifiers. The address creation mode is controlld by ip6.addr_gen_mode property (ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64", defaulting to "eui-64" if unspecified. The host part of an address is computed by hashing a system-specific secret salted with various stable values that identify the connection with a secure hash algorithm: RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) For NetworkManager we use these parameters: * F() SHA256 hash function. * Prefix This is a network part of the /64 address * Net_Iface We use the interface name (e.g. "eth0"). This ensures the address won't change with the change of interface hardware. * Network_ID We use the connection UUID here. This ensures the salt is different for wireless networks with a different SSID as suggested by RFC7217. * DAD_Counter A per-address counter that increases with each DAD failure. * secret_key We store the secret key in /var/lib/NetworkManager/secret_key. If it's shorter than 128 bits then it's rejected. If the file is not present we initialize it by fetching 256 pseudo-random bits from /dev/urandom on first use. Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation and may change in future. Neither parameter is currently configurable.
2015-10-03 19:44:27 +02:00
static void
test_stable_privacy (void)
{
struct in6_addr addr1;
inet_pton (AF_INET6, "1234::", &addr1);
nm_utils_ipv6_addr_set_stable_privacy_impl (NM_UTILS_STABLE_TYPE_UUID, &addr1, "eth666", "6b138152-9f3e-4b97-aaf7-e6e553f2a24e", 0, (guint8 *) "key", 3, NULL);
core: add support for RFC7217 stable privacy addressing RFC7217 introduces an alternative mechanism for creating addresses during stateless IPv6 address configuration. It's supposed to create addresses whose host part stays stable in a particular network but changes when the hosts enters another network to mitigate possibility of tracking the host movement. It can be used alongside RFC 4941 privacy extensions (temporary addresses) and replaces the use of RFC 4862 interface identifiers. The address creation mode is controlld by ip6.addr_gen_mode property (ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64", defaulting to "eui-64" if unspecified. The host part of an address is computed by hashing a system-specific secret salted with various stable values that identify the connection with a secure hash algorithm: RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) For NetworkManager we use these parameters: * F() SHA256 hash function. * Prefix This is a network part of the /64 address * Net_Iface We use the interface name (e.g. "eth0"). This ensures the address won't change with the change of interface hardware. * Network_ID We use the connection UUID here. This ensures the salt is different for wireless networks with a different SSID as suggested by RFC7217. * DAD_Counter A per-address counter that increases with each DAD failure. * secret_key We store the secret key in /var/lib/NetworkManager/secret_key. If it's shorter than 128 bits then it's rejected. If the file is not present we initialize it by fetching 256 pseudo-random bits from /dev/urandom on first use. Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation and may change in future. Neither parameter is currently configurable.
2015-10-03 19:44:27 +02:00
nmtst_assert_ip6_address (&addr1, "1234::4ceb:14cd:3d54:793f");
/* We get an address without the UUID. */
inet_pton (AF_INET6, "1::", &addr1);
nm_utils_ipv6_addr_set_stable_privacy_impl (NM_UTILS_STABLE_TYPE_UUID, &addr1, "eth666", "", 384, (guint8 *) "key", 3, NULL);
core: add support for RFC7217 stable privacy addressing RFC7217 introduces an alternative mechanism for creating addresses during stateless IPv6 address configuration. It's supposed to create addresses whose host part stays stable in a particular network but changes when the hosts enters another network to mitigate possibility of tracking the host movement. It can be used alongside RFC 4941 privacy extensions (temporary addresses) and replaces the use of RFC 4862 interface identifiers. The address creation mode is controlld by ip6.addr_gen_mode property (ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64", defaulting to "eui-64" if unspecified. The host part of an address is computed by hashing a system-specific secret salted with various stable values that identify the connection with a secure hash algorithm: RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) For NetworkManager we use these parameters: * F() SHA256 hash function. * Prefix This is a network part of the /64 address * Net_Iface We use the interface name (e.g. "eth0"). This ensures the address won't change with the change of interface hardware. * Network_ID We use the connection UUID here. This ensures the salt is different for wireless networks with a different SSID as suggested by RFC7217. * DAD_Counter A per-address counter that increases with each DAD failure. * secret_key We store the secret key in /var/lib/NetworkManager/secret_key. If it's shorter than 128 bits then it's rejected. If the file is not present we initialize it by fetching 256 pseudo-random bits from /dev/urandom on first use. Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation and may change in future. Neither parameter is currently configurable.
2015-10-03 19:44:27 +02:00
nmtst_assert_ip6_address (&addr1, "1::11aa:2530:9144:dafa");
/* We get a different address in a different network. */
inet_pton (AF_INET6, "2::", &addr1);
nm_utils_ipv6_addr_set_stable_privacy_impl (NM_UTILS_STABLE_TYPE_UUID, &addr1, "eth666", "", 384, (guint8 *) "key", 3, NULL);
core: add support for RFC7217 stable privacy addressing RFC7217 introduces an alternative mechanism for creating addresses during stateless IPv6 address configuration. It's supposed to create addresses whose host part stays stable in a particular network but changes when the hosts enters another network to mitigate possibility of tracking the host movement. It can be used alongside RFC 4941 privacy extensions (temporary addresses) and replaces the use of RFC 4862 interface identifiers. The address creation mode is controlld by ip6.addr_gen_mode property (ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64", defaulting to "eui-64" if unspecified. The host part of an address is computed by hashing a system-specific secret salted with various stable values that identify the connection with a secure hash algorithm: RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) For NetworkManager we use these parameters: * F() SHA256 hash function. * Prefix This is a network part of the /64 address * Net_Iface We use the interface name (e.g. "eth0"). This ensures the address won't change with the change of interface hardware. * Network_ID We use the connection UUID here. This ensures the salt is different for wireless networks with a different SSID as suggested by RFC7217. * DAD_Counter A per-address counter that increases with each DAD failure. * secret_key We store the secret key in /var/lib/NetworkManager/secret_key. If it's shorter than 128 bits then it's rejected. If the file is not present we initialize it by fetching 256 pseudo-random bits from /dev/urandom on first use. Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation and may change in future. Neither parameter is currently configurable.
2015-10-03 19:44:27 +02:00
nmtst_assert_ip6_address (&addr1, "2::338e:8d:c11:8726");
inet_pton (AF_INET6, "1234::", &addr1);
nm_utils_ipv6_addr_set_stable_privacy_impl (NM_UTILS_STABLE_TYPE_STABLE_ID, &addr1, "eth666", "6b138152-9f3e-4b97-aaf7-e6e553f2a24e", 0, (guint8 *) "key", 3, NULL);
nmtst_assert_ip6_address (&addr1, "1234::ad4c:ae44:3d30:af1e");
inet_pton (AF_INET6, "1234::", &addr1);
nm_utils_ipv6_addr_set_stable_privacy_impl (NM_UTILS_STABLE_TYPE_STABLE_ID, &addr1, "eth666", "stable-id-1", 0, (guint8 *) "key", 3, NULL);
nmtst_assert_ip6_address (&addr1, "1234::4944:67b0:7a6c:1cf");
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
}
/*****************************************************************************/
static void
_do_test_hw_addr (NMUtilsStableType stable_type,
const char *stable_id,
const guint8 *secret_key,
gsize key_len,
const char *ifname,
all: make MAC address randomization algorithm configurable For the per-connection settings "ethernet.cloned-mac-address" and "wifi.cloned-mac-address", and for the per-device setting "wifi.scan-rand-mac-address", we may generate MAC addresses using either the "random" or "stable" algorithm. Add new properties "generate-mac-address-mask" that allow to configure which bits of the MAC address will be scrambled. By default, the "random" and "stable" algorithms scamble all bits of the MAC address, including the OUI part and generate a locally- administered, unicast address. By specifying a MAC address mask, we can now configure to perserve parts of the current MAC address of the device. For example, setting "FF:FF:FF:00:00:00" will preserve the first 3 octects of the current MAC address. One can also explicitly specify a MAC address to use instead of the current MAC address. For example, "FF:FF:FF:00:00:00 68:F7:28:00:00:00" sets the OUI part of the MAC address to "68:F7:28" while scrambling the last 3 octects. Similarly, "02:00:00:00:00:00 00:00:00:00:00:00" will scamble all bits of the MAC address, except clearing the second-least significant bit. Thus, creating a burned-in address, globally administered. One can also supply a list of MAC addresses like "FF:FF:FF:00:00:00 68:F7:28:00:00:00 00:0C:29:00:00:00 ..." in which case a MAC address is choosen randomly. To fully scamble the MAC address one can configure "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00". which also randomly creates either a locally or globally administered address. With this, the following macchanger options can be implemented: `macchanger --random` This is the default if no mask is configured. -> "" while is the same as: -> "00:00:00:00:00:00" -> "02:00:00:00:00:00 02:00:00:00:00:00" `macchanger --random --bia` -> "02:00:00:00:00:00 00:00:00:00:00:00" `macchanger --ending` This option cannot be fully implemented, because macchanger uses the current MAC address but also implies --bia. -> "FF:FF:FF:00:00:00" This would yields the same result only if the current MAC address is already a burned-in address too. Otherwise, it has not the same effect as --ending. -> "FF:FF:FF:00:00:00 <MAC_ADDR>" Alternatively, instead of using the current MAC address, spell the OUI part out. But again, that is not really the same as macchanger does because you explictly have to name the OUI part to use. `machanger --another` `machanger --another_any` -> "FF:FF:FF:00:00:00 <MAC_ADDR> <MAC_ADDR> ..." "$(printf "FF:FF:FF:00:00:00 %s\n" "$(sed -n 's/^\([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) .*/\1:\2:\3:00:00:00/p' /usr/share/macchanger/wireless.list | xargs)")"
2016-06-22 20:31:39 +02:00
const char *current_mac_address,
const char *generate_mac_address_mask,
const char **expected)
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
{
gs_free char *generated = NULL;
all: make MAC address randomization algorithm configurable For the per-connection settings "ethernet.cloned-mac-address" and "wifi.cloned-mac-address", and for the per-device setting "wifi.scan-rand-mac-address", we may generate MAC addresses using either the "random" or "stable" algorithm. Add new properties "generate-mac-address-mask" that allow to configure which bits of the MAC address will be scrambled. By default, the "random" and "stable" algorithms scamble all bits of the MAC address, including the OUI part and generate a locally- administered, unicast address. By specifying a MAC address mask, we can now configure to perserve parts of the current MAC address of the device. For example, setting "FF:FF:FF:00:00:00" will preserve the first 3 octects of the current MAC address. One can also explicitly specify a MAC address to use instead of the current MAC address. For example, "FF:FF:FF:00:00:00 68:F7:28:00:00:00" sets the OUI part of the MAC address to "68:F7:28" while scrambling the last 3 octects. Similarly, "02:00:00:00:00:00 00:00:00:00:00:00" will scamble all bits of the MAC address, except clearing the second-least significant bit. Thus, creating a burned-in address, globally administered. One can also supply a list of MAC addresses like "FF:FF:FF:00:00:00 68:F7:28:00:00:00 00:0C:29:00:00:00 ..." in which case a MAC address is choosen randomly. To fully scamble the MAC address one can configure "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00". which also randomly creates either a locally or globally administered address. With this, the following macchanger options can be implemented: `macchanger --random` This is the default if no mask is configured. -> "" while is the same as: -> "00:00:00:00:00:00" -> "02:00:00:00:00:00 02:00:00:00:00:00" `macchanger --random --bia` -> "02:00:00:00:00:00 00:00:00:00:00:00" `macchanger --ending` This option cannot be fully implemented, because macchanger uses the current MAC address but also implies --bia. -> "FF:FF:FF:00:00:00" This would yields the same result only if the current MAC address is already a burned-in address too. Otherwise, it has not the same effect as --ending. -> "FF:FF:FF:00:00:00 <MAC_ADDR>" Alternatively, instead of using the current MAC address, spell the OUI part out. But again, that is not really the same as macchanger does because you explictly have to name the OUI part to use. `machanger --another` `machanger --another_any` -> "FF:FF:FF:00:00:00 <MAC_ADDR> <MAC_ADDR> ..." "$(printf "FF:FF:FF:00:00:00 %s\n" "$(sed -n 's/^\([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) .*/\1:\2:\3:00:00:00/p' /usr/share/macchanger/wireless.list | xargs)")"
2016-06-22 20:31:39 +02:00
const char **e;
gboolean found = FALSE;
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
all: make MAC address randomization algorithm configurable For the per-connection settings "ethernet.cloned-mac-address" and "wifi.cloned-mac-address", and for the per-device setting "wifi.scan-rand-mac-address", we may generate MAC addresses using either the "random" or "stable" algorithm. Add new properties "generate-mac-address-mask" that allow to configure which bits of the MAC address will be scrambled. By default, the "random" and "stable" algorithms scamble all bits of the MAC address, including the OUI part and generate a locally- administered, unicast address. By specifying a MAC address mask, we can now configure to perserve parts of the current MAC address of the device. For example, setting "FF:FF:FF:00:00:00" will preserve the first 3 octects of the current MAC address. One can also explicitly specify a MAC address to use instead of the current MAC address. For example, "FF:FF:FF:00:00:00 68:F7:28:00:00:00" sets the OUI part of the MAC address to "68:F7:28" while scrambling the last 3 octects. Similarly, "02:00:00:00:00:00 00:00:00:00:00:00" will scamble all bits of the MAC address, except clearing the second-least significant bit. Thus, creating a burned-in address, globally administered. One can also supply a list of MAC addresses like "FF:FF:FF:00:00:00 68:F7:28:00:00:00 00:0C:29:00:00:00 ..." in which case a MAC address is choosen randomly. To fully scamble the MAC address one can configure "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00". which also randomly creates either a locally or globally administered address. With this, the following macchanger options can be implemented: `macchanger --random` This is the default if no mask is configured. -> "" while is the same as: -> "00:00:00:00:00:00" -> "02:00:00:00:00:00 02:00:00:00:00:00" `macchanger --random --bia` -> "02:00:00:00:00:00 00:00:00:00:00:00" `macchanger --ending` This option cannot be fully implemented, because macchanger uses the current MAC address but also implies --bia. -> "FF:FF:FF:00:00:00" This would yields the same result only if the current MAC address is already a burned-in address too. Otherwise, it has not the same effect as --ending. -> "FF:FF:FF:00:00:00 <MAC_ADDR>" Alternatively, instead of using the current MAC address, spell the OUI part out. But again, that is not really the same as macchanger does because you explictly have to name the OUI part to use. `machanger --another` `machanger --another_any` -> "FF:FF:FF:00:00:00 <MAC_ADDR> <MAC_ADDR> ..." "$(printf "FF:FF:FF:00:00:00 %s\n" "$(sed -n 's/^\([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) .*/\1:\2:\3:00:00:00/p' /usr/share/macchanger/wireless.list | xargs)")"
2016-06-22 20:31:39 +02:00
for (e = expected; *e; e++) {
g_assert (*e);
g_assert (nm_utils_hwaddr_valid (*e, ETH_ALEN));
}
generated = nm_utils_hw_addr_gen_stable_eth_impl (stable_type,
stable_id,
secret_key,
key_len,
ifname,
current_mac_address,
generate_mac_address_mask);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
g_assert (generated);
g_assert (nm_utils_hwaddr_valid (generated, ETH_ALEN));
all: make MAC address randomization algorithm configurable For the per-connection settings "ethernet.cloned-mac-address" and "wifi.cloned-mac-address", and for the per-device setting "wifi.scan-rand-mac-address", we may generate MAC addresses using either the "random" or "stable" algorithm. Add new properties "generate-mac-address-mask" that allow to configure which bits of the MAC address will be scrambled. By default, the "random" and "stable" algorithms scamble all bits of the MAC address, including the OUI part and generate a locally- administered, unicast address. By specifying a MAC address mask, we can now configure to perserve parts of the current MAC address of the device. For example, setting "FF:FF:FF:00:00:00" will preserve the first 3 octects of the current MAC address. One can also explicitly specify a MAC address to use instead of the current MAC address. For example, "FF:FF:FF:00:00:00 68:F7:28:00:00:00" sets the OUI part of the MAC address to "68:F7:28" while scrambling the last 3 octects. Similarly, "02:00:00:00:00:00 00:00:00:00:00:00" will scamble all bits of the MAC address, except clearing the second-least significant bit. Thus, creating a burned-in address, globally administered. One can also supply a list of MAC addresses like "FF:FF:FF:00:00:00 68:F7:28:00:00:00 00:0C:29:00:00:00 ..." in which case a MAC address is choosen randomly. To fully scamble the MAC address one can configure "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00". which also randomly creates either a locally or globally administered address. With this, the following macchanger options can be implemented: `macchanger --random` This is the default if no mask is configured. -> "" while is the same as: -> "00:00:00:00:00:00" -> "02:00:00:00:00:00 02:00:00:00:00:00" `macchanger --random --bia` -> "02:00:00:00:00:00 00:00:00:00:00:00" `macchanger --ending` This option cannot be fully implemented, because macchanger uses the current MAC address but also implies --bia. -> "FF:FF:FF:00:00:00" This would yields the same result only if the current MAC address is already a burned-in address too. Otherwise, it has not the same effect as --ending. -> "FF:FF:FF:00:00:00 <MAC_ADDR>" Alternatively, instead of using the current MAC address, spell the OUI part out. But again, that is not really the same as macchanger does because you explictly have to name the OUI part to use. `machanger --another` `machanger --another_any` -> "FF:FF:FF:00:00:00 <MAC_ADDR> <MAC_ADDR> ..." "$(printf "FF:FF:FF:00:00:00 %s\n" "$(sed -n 's/^\([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) .*/\1:\2:\3:00:00:00/p' /usr/share/macchanger/wireless.list | xargs)")"
2016-06-22 20:31:39 +02:00
for (e = expected; *e; e++) {
if (!nm_utils_hwaddr_matches (generated, -1, *e, -1))
continue;
g_assert (!found);
found = TRUE;
g_assert_cmpstr (generated, ==, *e);
}
g_assert (found);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
}
all: make MAC address randomization algorithm configurable For the per-connection settings "ethernet.cloned-mac-address" and "wifi.cloned-mac-address", and for the per-device setting "wifi.scan-rand-mac-address", we may generate MAC addresses using either the "random" or "stable" algorithm. Add new properties "generate-mac-address-mask" that allow to configure which bits of the MAC address will be scrambled. By default, the "random" and "stable" algorithms scamble all bits of the MAC address, including the OUI part and generate a locally- administered, unicast address. By specifying a MAC address mask, we can now configure to perserve parts of the current MAC address of the device. For example, setting "FF:FF:FF:00:00:00" will preserve the first 3 octects of the current MAC address. One can also explicitly specify a MAC address to use instead of the current MAC address. For example, "FF:FF:FF:00:00:00 68:F7:28:00:00:00" sets the OUI part of the MAC address to "68:F7:28" while scrambling the last 3 octects. Similarly, "02:00:00:00:00:00 00:00:00:00:00:00" will scamble all bits of the MAC address, except clearing the second-least significant bit. Thus, creating a burned-in address, globally administered. One can also supply a list of MAC addresses like "FF:FF:FF:00:00:00 68:F7:28:00:00:00 00:0C:29:00:00:00 ..." in which case a MAC address is choosen randomly. To fully scamble the MAC address one can configure "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00". which also randomly creates either a locally or globally administered address. With this, the following macchanger options can be implemented: `macchanger --random` This is the default if no mask is configured. -> "" while is the same as: -> "00:00:00:00:00:00" -> "02:00:00:00:00:00 02:00:00:00:00:00" `macchanger --random --bia` -> "02:00:00:00:00:00 00:00:00:00:00:00" `macchanger --ending` This option cannot be fully implemented, because macchanger uses the current MAC address but also implies --bia. -> "FF:FF:FF:00:00:00" This would yields the same result only if the current MAC address is already a burned-in address too. Otherwise, it has not the same effect as --ending. -> "FF:FF:FF:00:00:00 <MAC_ADDR>" Alternatively, instead of using the current MAC address, spell the OUI part out. But again, that is not really the same as macchanger does because you explictly have to name the OUI part to use. `machanger --another` `machanger --another_any` -> "FF:FF:FF:00:00:00 <MAC_ADDR> <MAC_ADDR> ..." "$(printf "FF:FF:FF:00:00:00 %s\n" "$(sed -n 's/^\([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) .*/\1:\2:\3:00:00:00/p' /usr/share/macchanger/wireless.list | xargs)")"
2016-06-22 20:31:39 +02:00
#define do_test_hw_addr(stable_type, stable_id, secret_key, ifname, current_mac_address, generate_mac_address_mask, ...) \
_do_test_hw_addr ((stable_type), (stable_id), (const guint8 *) ""secret_key"", NM_STRLEN (secret_key), (ifname), ""current_mac_address"", generate_mac_address_mask, (const char *[]) { __VA_ARGS__, NULL })
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
static void
test_hw_addr_gen_stable_eth (void)
{
all: make MAC address randomization algorithm configurable For the per-connection settings "ethernet.cloned-mac-address" and "wifi.cloned-mac-address", and for the per-device setting "wifi.scan-rand-mac-address", we may generate MAC addresses using either the "random" or "stable" algorithm. Add new properties "generate-mac-address-mask" that allow to configure which bits of the MAC address will be scrambled. By default, the "random" and "stable" algorithms scamble all bits of the MAC address, including the OUI part and generate a locally- administered, unicast address. By specifying a MAC address mask, we can now configure to perserve parts of the current MAC address of the device. For example, setting "FF:FF:FF:00:00:00" will preserve the first 3 octects of the current MAC address. One can also explicitly specify a MAC address to use instead of the current MAC address. For example, "FF:FF:FF:00:00:00 68:F7:28:00:00:00" sets the OUI part of the MAC address to "68:F7:28" while scrambling the last 3 octects. Similarly, "02:00:00:00:00:00 00:00:00:00:00:00" will scamble all bits of the MAC address, except clearing the second-least significant bit. Thus, creating a burned-in address, globally administered. One can also supply a list of MAC addresses like "FF:FF:FF:00:00:00 68:F7:28:00:00:00 00:0C:29:00:00:00 ..." in which case a MAC address is choosen randomly. To fully scamble the MAC address one can configure "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00". which also randomly creates either a locally or globally administered address. With this, the following macchanger options can be implemented: `macchanger --random` This is the default if no mask is configured. -> "" while is the same as: -> "00:00:00:00:00:00" -> "02:00:00:00:00:00 02:00:00:00:00:00" `macchanger --random --bia` -> "02:00:00:00:00:00 00:00:00:00:00:00" `macchanger --ending` This option cannot be fully implemented, because macchanger uses the current MAC address but also implies --bia. -> "FF:FF:FF:00:00:00" This would yields the same result only if the current MAC address is already a burned-in address too. Otherwise, it has not the same effect as --ending. -> "FF:FF:FF:00:00:00 <MAC_ADDR>" Alternatively, instead of using the current MAC address, spell the OUI part out. But again, that is not really the same as macchanger does because you explictly have to name the OUI part to use. `machanger --another` `machanger --another_any` -> "FF:FF:FF:00:00:00 <MAC_ADDR> <MAC_ADDR> ..." "$(printf "FF:FF:FF:00:00:00 %s\n" "$(sed -n 's/^\([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) \([0-9a-fA-F][0-9a-fA-F]\) .*/\1:\2:\3:00:00:00/p' /usr/share/macchanger/wireless.list | xargs)")"
2016-06-22 20:31:39 +02:00
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", NULL, "06:0D:CD:0C:9E:2C");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_STABLE_ID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", NULL, "C6:AE:A9:9A:76:09");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", "FF:FF:FF:00:00:00", "00:23:45:0C:9E:2C");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "03:23:45:67:89:ab", "FF:FF:FF:00:00:00", "02:23:45:0C:9E:2C");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", "00:00:00:00:00:00", "06:0D:CD:0C:9E:2C");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", "02:00:00:00:00:00", "04:0D:CD:0C:9E:2C");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", "02:00:00:00:00:00", "04:0D:CD:0C:9E:2C");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", "02:00:00:00:00:00 00:00:00:00:00:00", "04:0D:CD:0C:9E:2C");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", "02:00:00:00:00:00 02:00:00:00:00:00", "06:0D:CD:0C:9E:2C");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", "00:00:00:00:00:00 E9:60:CE:F5:ED:2F", "06:0D:CD:0C:9E:2C");
do_test_hw_addr (NM_UTILS_STABLE_TYPE_UUID, "stable-1", "key1", "eth0", "01:23:45:67:89:ab", "02:00:00:00:00:00 00:00:00:00:00:00 02:00:00:00:00:00", "06:0D:CD:0C:9E:2C", "04:0D:CD:0C:9E:2C");
core: add support for RFC7217 stable privacy addressing RFC7217 introduces an alternative mechanism for creating addresses during stateless IPv6 address configuration. It's supposed to create addresses whose host part stays stable in a particular network but changes when the hosts enters another network to mitigate possibility of tracking the host movement. It can be used alongside RFC 4941 privacy extensions (temporary addresses) and replaces the use of RFC 4862 interface identifiers. The address creation mode is controlld by ip6.addr_gen_mode property (ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64", defaulting to "eui-64" if unspecified. The host part of an address is computed by hashing a system-specific secret salted with various stable values that identify the connection with a secure hash algorithm: RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) For NetworkManager we use these parameters: * F() SHA256 hash function. * Prefix This is a network part of the /64 address * Net_Iface We use the interface name (e.g. "eth0"). This ensures the address won't change with the change of interface hardware. * Network_ID We use the connection UUID here. This ensures the salt is different for wireless networks with a different SSID as suggested by RFC7217. * DAD_Counter A per-address counter that increases with each DAD failure. * secret_key We store the secret key in /var/lib/NetworkManager/secret_key. If it's shorter than 128 bits then it's rejected. If the file is not present we initialize it by fetching 256 pseudo-random bits from /dev/urandom on first use. Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation and may change in future. Neither parameter is currently configurable.
2015-10-03 19:44:27 +02:00
}
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
/*****************************************************************************/
core: add support for RFC7217 stable privacy addressing RFC7217 introduces an alternative mechanism for creating addresses during stateless IPv6 address configuration. It's supposed to create addresses whose host part stays stable in a particular network but changes when the hosts enters another network to mitigate possibility of tracking the host movement. It can be used alongside RFC 4941 privacy extensions (temporary addresses) and replaces the use of RFC 4862 interface identifiers. The address creation mode is controlld by ip6.addr_gen_mode property (ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64", defaulting to "eui-64" if unspecified. The host part of an address is computed by hashing a system-specific secret salted with various stable values that identify the connection with a secure hash algorithm: RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) For NetworkManager we use these parameters: * F() SHA256 hash function. * Prefix This is a network part of the /64 address * Net_Iface We use the interface name (e.g. "eth0"). This ensures the address won't change with the change of interface hardware. * Network_ID We use the connection UUID here. This ensures the salt is different for wireless networks with a different SSID as suggested by RFC7217. * DAD_Counter A per-address counter that increases with each DAD failure. * secret_key We store the secret key in /var/lib/NetworkManager/secret_key. If it's shorter than 128 bits then it's rejected. If the file is not present we initialize it by fetching 256 pseudo-random bits from /dev/urandom on first use. Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation and may change in future. Neither parameter is currently configurable.
2015-10-03 19:44:27 +02:00
NMTST_DEFINE ();
int
main (int argc, char **argv)
{
nmtst_init_with_logging (&argc, &argv, NULL, "ALL");
g_test_add_func ("/utils/stable_privacy", test_stable_privacy);
device: extend MAC address handling including randomization for ethernet and wifi Extend the "ethernet.cloned-mac-address" and "wifi.cloned-mac-address" settings. Instead of specifying an explicit MAC address, the additional special values "permanent", "preserve", "random", "random-bia", "stable" and "stable-bia" are supported. "permanent" means to use the permanent hardware address. Previously that was the default if no explict cloned-mac-address was set. The default is thus still "permanent", but it can be overwritten by global configuration. "preserve" means not to configure the MAC address when activating the device. That was actually the default behavior before introducing MAC address handling with commit 1b49f941a69af910b0e68530be7339e8053068e5. "random" and "random-bia" use a randomized MAC address for each connection. "stable" and "stable-bia" use a generated, stable address based on some token. The "bia" suffix says to generate a burned-in address. The stable method by default uses as token the connection UUID, but the token can be explicitly choosen via "stable:<TOKEN>" and "stable-bia:<TOKEN>". On a D-Bus level, the "cloned-mac-address" is a bytestring and thus cannot express the new forms. It is replaced by the new "assigned-mac-address" field. For the GObject property, libnm's API, nmcli, keyfile, etc. the old name "cloned-mac-address" is still used. Deprecating the old field seems more complicated then just extending the use of the existing "cloned-mac-address" field, although the name doesn't match well with the extended meaning. There is some overlap with the "wifi.mac-address-randomization" setting. https://bugzilla.gnome.org/show_bug.cgi?id=705545 https://bugzilla.gnome.org/show_bug.cgi?id=708820 https://bugzilla.gnome.org/show_bug.cgi?id=758301
2016-05-24 15:57:16 +02:00
g_test_add_func ("/utils/hw_addr_gen_stable_eth", test_hw_addr_gen_stable_eth);
core: add support for RFC7217 stable privacy addressing RFC7217 introduces an alternative mechanism for creating addresses during stateless IPv6 address configuration. It's supposed to create addresses whose host part stays stable in a particular network but changes when the hosts enters another network to mitigate possibility of tracking the host movement. It can be used alongside RFC 4941 privacy extensions (temporary addresses) and replaces the use of RFC 4862 interface identifiers. The address creation mode is controlld by ip6.addr_gen_mode property (ADDR_GEN_MODE in ifcfg-rh), with values of "stable-privacy" and "eui-64", defaulting to "eui-64" if unspecified. The host part of an address is computed by hashing a system-specific secret salted with various stable values that identify the connection with a secure hash algorithm: RID = F(Prefix, Net_Iface, Network_ID, DAD_Counter, secret_key) For NetworkManager we use these parameters: * F() SHA256 hash function. * Prefix This is a network part of the /64 address * Net_Iface We use the interface name (e.g. "eth0"). This ensures the address won't change with the change of interface hardware. * Network_ID We use the connection UUID here. This ensures the salt is different for wireless networks with a different SSID as suggested by RFC7217. * DAD_Counter A per-address counter that increases with each DAD failure. * secret_key We store the secret key in /var/lib/NetworkManager/secret_key. If it's shorter than 128 bits then it's rejected. If the file is not present we initialize it by fetching 256 pseudo-random bits from /dev/urandom on first use. Duplicate address detection uses IDGEN_RETRIES = 3 and does not utilize the IDGEN_DELAY delay (despite it SHOULD). This is for ease of implementation and may change in future. Neither parameter is currently configurable.
2015-10-03 19:44:27 +02:00
return g_test_run ();
}