2020-12-23 22:21:36 +01:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
2019-09-25 13:13:40 +02:00
|
|
|
/*
|
2019-10-01 09:20:35 +02:00
|
|
|
* Copyright (C) 2018 Red Hat, Inc.
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
*/
|
|
|
|
|
|
2021-02-04 18:04:13 +01:00
|
|
|
#include "src/core/nm-default-daemon.h"
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
|
|
|
|
#include "nm-dbus-object.h"
|
|
|
|
|
|
|
|
|
|
#include "nm-dbus-manager.h"
|
2020-07-29 19:26:05 +02:00
|
|
|
#include "NetworkManagerUtils.h"
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
|
|
2018-03-29 19:27:24 +02:00
|
|
|
enum {
|
|
|
|
|
EXPORTED_CHANGED,
|
|
|
|
|
|
|
|
|
|
LAST_SIGNAL,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static guint signals[LAST_SIGNAL] = {0};
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
|
|
|
|
G_DEFINE_ABSTRACT_TYPE(NMDBusObject, nm_dbus_object, G_TYPE_OBJECT);
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
|
|
|
|
|
|
#define _NMLOG_DOMAIN LOGD_CORE
|
|
|
|
|
#define _NMLOG(level, ...) \
|
|
|
|
|
__NMLOG_DEFAULT_WITH_ADDR(level, _NMLOG_DOMAIN, "dbus-object", __VA_ARGS__)
|
|
|
|
|
|
|
|
|
|
#define _NMLOG2_DOMAIN LOGD_DBUS_PROPS
|
|
|
|
|
#define _NMLOG2(level, ...) \
|
|
|
|
|
__NMLOG_DEFAULT_WITH_ADDR(level, _NMLOG2_DOMAIN, "properties-changed", __VA_ARGS__)
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
|
|
2018-03-29 19:27:24 +02:00
|
|
|
static void
|
|
|
|
|
_emit_exported_changed(NMDBusObject *self)
|
|
|
|
|
{
|
|
|
|
|
g_signal_emit(self, signals[EXPORTED_CHANGED], 0);
|
|
|
|
|
}
|
|
|
|
|
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
static char *
|
|
|
|
|
_create_export_path(NMDBusObjectClass *klass)
|
|
|
|
|
{
|
2018-03-13 10:14:06 +01:00
|
|
|
nm_assert(NM_IS_DBUS_OBJECT_CLASS(klass));
|
|
|
|
|
nm_assert(klass->export_path.path);
|
|
|
|
|
|
|
|
|
|
#if NM_MORE_ASSERTS
|
|
|
|
|
{
|
|
|
|
|
const char *p;
|
2020-09-28 16:03:33 +02:00
|
|
|
|
2018-03-13 10:14:06 +01:00
|
|
|
p = strchr(klass->export_path.path, '%');
|
|
|
|
|
if (klass->export_path.int_counter) {
|
|
|
|
|
nm_assert(p);
|
|
|
|
|
nm_assert(p[1] == 'l');
|
|
|
|
|
nm_assert(p[2] == 'l');
|
|
|
|
|
nm_assert(p[3] == 'u');
|
|
|
|
|
nm_assert(p[4] == '\0');
|
|
|
|
|
} else
|
|
|
|
|
nm_assert(!p);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2018-03-13 10:14:06 +01:00
|
|
|
if (klass->export_path.int_counter) {
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
NM_PRAGMA_WARNING_DISABLE("-Wformat-nonliteral")
|
2018-03-13 10:14:06 +01:00
|
|
|
return g_strdup_printf(klass->export_path.path, ++(*klass->export_path.int_counter));
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
NM_PRAGMA_WARNING_REENABLE
|
|
|
|
|
}
|
2018-03-13 10:14:06 +01:00
|
|
|
return g_strdup(klass->export_path.path);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* nm_dbus_object_export:
|
|
|
|
|
* @self: an #NMDBusObject
|
|
|
|
|
*
|
|
|
|
|
* Exports @self on all active and future D-Bus connections.
|
|
|
|
|
*
|
|
|
|
|
* The path to export @self on is taken from its #NMObjectClass's %export_path
|
|
|
|
|
* member. If the %export_path contains "%u", then it will be replaced with a
|
|
|
|
|
* monotonically increasing integer ID (with each distinct %export_path having
|
|
|
|
|
* its own counter). Otherwise, %export_path will be used literally (implying
|
|
|
|
|
* that @self must be a singleton).
|
|
|
|
|
*
|
|
|
|
|
* Returns: the path @self was exported under
|
|
|
|
|
*/
|
|
|
|
|
const char *
|
2020-09-04 18:04:37 +02:00
|
|
|
nm_dbus_object_export(gpointer /* (NMDBusObject *) */ self)
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
{
|
2021-11-09 13:28:54 +01:00
|
|
|
NMDBusObject *self1 = self;
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
static guint64 id_counter = 0;
|
|
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
g_return_val_if_fail(NM_IS_DBUS_OBJECT(self1), NULL);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
g_return_val_if_fail(!self1->internal.path, self1->internal.path);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
nm_assert(!self1->internal.is_unexporting);
|
2018-03-29 19:27:24 +02:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
self1->internal.path = _create_export_path(NM_DBUS_OBJECT_GET_CLASS(self1));
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
self1->internal.export_version_id = ++id_counter;
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
_LOGT("export: \"%s\"", self1->internal.path);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
_nm_dbus_manager_obj_export(self1);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
_emit_exported_changed(self1);
|
|
|
|
|
return self1->internal.path;
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* nm_dbus_object_unexport:
|
|
|
|
|
* @self: an #NMDBusObject
|
|
|
|
|
*
|
|
|
|
|
* Unexports @self on all active D-Bus connections (and prevents it from being
|
|
|
|
|
* auto-exported on future connections).
|
|
|
|
|
*/
|
|
|
|
|
void
|
2020-09-04 18:04:37 +02:00
|
|
|
nm_dbus_object_unexport(gpointer /* (NMDBusObject *) */ self)
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
{
|
2020-09-04 18:04:37 +02:00
|
|
|
NMDBusObject *self1 = self;
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
g_return_if_fail(NM_IS_DBUS_OBJECT(self1));
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
g_return_if_fail(self1->internal.path);
|
|
|
|
|
|
|
|
|
|
_LOGT("unexport: \"%s\"", self1->internal.path);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2018-03-29 19:27:24 +02:00
|
|
|
/* note that we emit the signal *before* actually unexporting the object.
|
|
|
|
|
* The reason is, that listeners want to use this signal to know that
|
|
|
|
|
* the object goes away, and clear their D-Bus path to this object.
|
|
|
|
|
*
|
|
|
|
|
* But this must happen before we actually unregister the object, so
|
|
|
|
|
* that we first emit a D-Bus signal that other objects no longer
|
|
|
|
|
* reference this object, before finally unregistering the object itself.
|
|
|
|
|
*
|
|
|
|
|
* The inconvenient part is, that at this point nm_dbus_object_get_path()
|
|
|
|
|
* still returns the path. So, the callee needs to handle that. Possibly
|
|
|
|
|
* by using "nm_dbus_object_get_path_still_exported()". */
|
2020-09-04 18:04:37 +02:00
|
|
|
self1->internal.is_unexporting = TRUE;
|
2018-03-29 19:27:24 +02:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
_emit_exported_changed(self1);
|
2018-03-29 19:27:24 +02:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
_nm_dbus_manager_obj_unexport(self1);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
nm_clear_g_free(&self1->internal.path);
|
|
|
|
|
self1->internal.export_version_id = 0;
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
self1->internal.is_unexporting = FALSE;
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
}
|
|
|
|
|
|
2020-07-29 19:26:05 +02:00
|
|
|
static gboolean
|
|
|
|
|
_unexport_on_idle_cb(gpointer user_data)
|
|
|
|
|
{
|
|
|
|
|
gs_unref_object NMDBusObject *self = user_data;
|
|
|
|
|
|
|
|
|
|
nm_dbus_object_unexport(self);
|
|
|
|
|
return G_SOURCE_REMOVE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2020-09-04 18:04:37 +02:00
|
|
|
nm_dbus_object_unexport_on_idle(gpointer /* (NMDBusObject *) */ self_take)
|
2020-07-29 19:26:05 +02:00
|
|
|
{
|
2020-09-04 18:04:37 +02:00
|
|
|
NMDBusObject *self = g_steal_pointer(&self_take);
|
|
|
|
|
|
|
|
|
|
if (!self)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
g_return_if_fail(NM_IS_DBUS_OBJECT(self));
|
2020-07-29 19:26:05 +02:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
g_return_if_fail(self->internal.path);
|
2020-07-29 19:26:05 +02:00
|
|
|
|
|
|
|
|
/* There is no mechanism to cancel or abort the unexport. It will always
|
|
|
|
|
* gonna happen.
|
|
|
|
|
*
|
|
|
|
|
* However, we register it to block shutdown, so that we ensure that it will happen. */
|
|
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
nm_shutdown_wait_obj_register_object(self, "unexport-dbus-obj-on-idle");
|
2020-07-29 19:26:05 +02:00
|
|
|
|
2020-09-04 18:04:37 +02:00
|
|
|
/* pass on ownership. */
|
2021-07-23 21:47:32 +02:00
|
|
|
nm_g_idle_add(_unexport_on_idle_cb, g_steal_pointer(&self));
|
2020-07-29 19:26:05 +02:00
|
|
|
}
|
|
|
|
|
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
/*****************************************************************************/
|
|
|
|
|
|
2021-04-15 19:44:31 +02:00
|
|
|
gboolean
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
_nm_dbus_object_clear_and_unexport(NMDBusObject **location)
|
|
|
|
|
{
|
|
|
|
|
NMDBusObject *self;
|
|
|
|
|
|
2021-04-15 19:44:31 +02:00
|
|
|
g_return_val_if_fail(location, FALSE);
|
|
|
|
|
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
if (!*location)
|
2021-04-15 19:44:31 +02:00
|
|
|
return FALSE;
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
|
|
|
|
self = g_steal_pointer(location);
|
|
|
|
|
|
2021-04-15 19:44:31 +02:00
|
|
|
g_return_val_if_fail(NM_IS_DBUS_OBJECT(self), FALSE);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
|
|
|
|
|
if (self->internal.path)
|
|
|
|
|
nm_dbus_object_unexport(self);
|
|
|
|
|
|
|
|
|
|
g_object_unref(self);
|
2021-04-15 19:44:31 +02:00
|
|
|
return TRUE;
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
|
|
|
|
|
|
void
|
2021-11-09 13:28:54 +01:00
|
|
|
nm_dbus_object_emit_signal_variant(NMDBusObject *self,
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
const NMDBusInterfaceInfoExtended *interface_info,
|
2021-11-09 13:28:54 +01:00
|
|
|
const GDBusSignalInfo *signal_info,
|
|
|
|
|
GVariant *args)
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
{
|
|
|
|
|
if (!self->internal.path) {
|
|
|
|
|
nm_g_variant_unref_floating(args);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
_nm_dbus_manager_obj_emit_signal(self, interface_info, signal_info, args);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2021-11-09 13:28:54 +01:00
|
|
|
nm_dbus_object_emit_signal(NMDBusObject *self,
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
const NMDBusInterfaceInfoExtended *interface_info,
|
2021-11-09 13:28:54 +01:00
|
|
|
const GDBusSignalInfo *signal_info,
|
|
|
|
|
const char *format,
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
...)
|
|
|
|
|
{
|
|
|
|
|
va_list ap;
|
|
|
|
|
|
|
|
|
|
nm_assert(NM_IS_DBUS_OBJECT(self));
|
|
|
|
|
nm_assert(format);
|
|
|
|
|
|
|
|
|
|
if (!self->internal.path)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
va_start(ap, format);
|
|
|
|
|
_nm_dbus_manager_obj_emit_signal(self,
|
|
|
|
|
interface_info,
|
|
|
|
|
signal_info,
|
|
|
|
|
g_variant_new_va(format, NULL, &ap));
|
|
|
|
|
va_end(ap);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
dispatch_properties_changed(GObject *object, guint n_pspecs, GParamSpec **pspecs)
|
|
|
|
|
{
|
|
|
|
|
NMDBusObject *self = NM_DBUS_OBJECT(object);
|
|
|
|
|
|
|
|
|
|
if (self->internal.path)
|
|
|
|
|
_nm_dbus_manager_obj_notify(self, n_pspecs, (const GParamSpec *const *) pspecs);
|
|
|
|
|
|
|
|
|
|
G_OBJECT_CLASS(nm_dbus_object_parent_class)
|
|
|
|
|
->dispatch_properties_changed(object, n_pspecs, pspecs);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
nm_dbus_object_init(NMDBusObject *self)
|
|
|
|
|
{
|
|
|
|
|
c_list_init(&self->internal.objects_lst);
|
|
|
|
|
c_list_init(&self->internal.registration_lst_head);
|
|
|
|
|
self->internal.bus_manager = nm_g_object_ref(nm_dbus_manager_get());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
constructed(GObject *object)
|
|
|
|
|
{
|
|
|
|
|
NMDBusObjectClass *klass;
|
|
|
|
|
|
|
|
|
|
G_OBJECT_CLASS(nm_dbus_object_parent_class)->constructed(object);
|
|
|
|
|
|
|
|
|
|
klass = NM_DBUS_OBJECT_GET_CLASS(object);
|
|
|
|
|
|
|
|
|
|
if (klass->export_on_construction)
|
|
|
|
|
nm_dbus_object_export((NMDBusObject *) object);
|
|
|
|
|
|
|
|
|
|
/* NMDBusObject types should be very careful when overwriting notify().
|
|
|
|
|
* It is possible to do, but this is a reminder that it's probably not
|
|
|
|
|
* a good idea.
|
|
|
|
|
*
|
|
|
|
|
* It's not a good idea, because NMDBusObject uses dispatch_properties_changed()
|
|
|
|
|
* to emit signals about a bunch of property changes. So, we want to make
|
|
|
|
|
* use of g_object_freeze_notify() / g_object_thaw_notify() to combine multiple
|
|
|
|
|
* property changes in one signal on D-Bus. Note that notify() is not invoked
|
|
|
|
|
* while the signal is frozen, that means, whatever you do inside notify()
|
|
|
|
|
* will not make it into the same batch of PropertiesChanged signal. That is
|
|
|
|
|
* confusing, and probably not what you want.
|
|
|
|
|
*
|
|
|
|
|
* Simple solution: don't overwrite notify(). */
|
|
|
|
|
nm_assert(!G_OBJECT_CLASS(klass)->notify);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
dispose(GObject *object)
|
|
|
|
|
{
|
|
|
|
|
NMDBusObject *self = NM_DBUS_OBJECT(object);
|
|
|
|
|
|
|
|
|
|
/* Objects should have already been unexported by their owner, unless
|
|
|
|
|
* we are quitting, where many objects stick around until exit.
|
|
|
|
|
*/
|
2018-04-17 16:33:41 +02:00
|
|
|
if (self->internal.path) {
|
core/dbus: stop NMDBusManager and reject future method calls
During shutdown, we will need to still iterate the main loop
to do a coordinated shutdown. Currently we do not, and we just
exit, leaving a lot of objects hanging.
If we are going to fix that, we need during shutdown tell
NMDBusManager to reject all future operations.
Note that property getters and "GetManagerObjects" call is not
blocked. It continues to work.
Certainly for some operations, we want to allow them to be called even
during shutdown. However, these have to opt-in.
This also fixes an uglyness, where nm_dbus_manager_start() would
get the set-property-handler and the @manager as user-data. However,
NMDBusManager will always outlife NMManager, hence, after NMManager
is destroyed, the user-data would be a dangling pointer. Currently
that is not an issue, because
- we always leak NMManager
- we don't run the mainloop during shutdown
2018-04-21 13:25:57 +02:00
|
|
|
if (!nm_dbus_manager_is_stopping(nm_dbus_object_get_manager(self)))
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
g_warn_if_reached();
|
2018-04-17 16:33:41 +02:00
|
|
|
nm_dbus_object_unexport(self);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
G_OBJECT_CLASS(nm_dbus_object_parent_class)->dispose(object);
|
|
|
|
|
|
|
|
|
|
g_clear_object(&self->internal.bus_manager);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
nm_dbus_object_class_init(NMDBusObjectClass *klass)
|
|
|
|
|
{
|
|
|
|
|
GObjectClass *object_class = G_OBJECT_CLASS(klass);
|
2020-09-28 16:03:33 +02:00
|
|
|
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
object_class->constructed = constructed;
|
|
|
|
|
object_class->dispose = dispose;
|
|
|
|
|
object_class->dispatch_properties_changed = dispatch_properties_changed;
|
2020-09-28 16:03:33 +02:00
|
|
|
|
2018-03-29 19:27:24 +02:00
|
|
|
signals[EXPORTED_CHANGED] = g_signal_new(NM_DBUS_OBJECT_EXPORTED_CHANGED,
|
|
|
|
|
G_OBJECT_CLASS_TYPE(object_class),
|
|
|
|
|
G_SIGNAL_RUN_FIRST,
|
|
|
|
|
0,
|
|
|
|
|
NULL,
|
|
|
|
|
NULL,
|
|
|
|
|
g_cclosure_marshal_VOID__VOID,
|
|
|
|
|
G_TYPE_NONE,
|
|
|
|
|
0);
|
core/dbus: rework D-Bus implementation to use lower layer GDBusConnection API
Previously, we used the generated GDBusInterfaceSkeleton types and glued
them via the NMExportedObject base class to our NM types. We also used
GDBusObjectManagerServer.
Don't do that anymore. The resulting code was more complicated despite (or
because?) using generated classes. It was hard to understand, complex, had
ordering-issues, and had a runtime and memory overhead.
This patch refactors this entirely and uses the lower layer API GDBusConnection
directly. It replaces the generated code, GDBusInterfaceSkeleton, and
GDBusObjectManagerServer. All this is now done by NMDbusObject and NMDBusManager
and static descriptor instances of type GDBusInterfaceInfo.
This adds a net plus of more then 1300 lines of hand written code. I claim
that this implementation is easier to understand. Note that previously we
also required extensive and complex glue code to bind our objects to the
generated skeleton objects. Instead, now glue our objects directly to
GDBusConnection. The result is more immediate and gets rid of layers of
code in between.
Now that the D-Bus glue us more under our control, we can address issus and
bottlenecks better, instead of adding code to bend the generated skeletons
to our needs.
Note that the current implementation now only supports one D-Bus connection.
That was effectively the case already, although there were places (and still are)
where the code pretends it could also support connections from a private socket.
We dropped private socket support mainly because it was unused, untested and
buggy, but also because GDBusObjectManagerServer could not export the same
objects on multiple connections. Now, it would be rather straight forward to
fix that and re-introduce ObjectManager on each private connection. But this
commit doesn't do that yet, and the new code intentionally supports only one
D-Bus connection.
Also, the D-Bus startup was simplified. There is no retry, either nm_dbus_manager_start()
succeeds, or it detects the initrd case. In the initrd case, bus manager never tries to
connect to D-Bus. Since the initrd scenario is not yet used/tested, this is good enough
for the moment. It could be easily extended later, for example with polling whether the
system bus appears (like was done previously). Also, restart of D-Bus daemon isn't
supported either -- just like before.
Note how NMDBusManager now implements the ObjectManager D-Bus interface
directly.
Also, this fixes race issues in the server, by no longer delaying
PropertiesChanged signals. NMExportedObject would collect changed
properties and send the signal out in idle_emit_properties_changed()
on idle. This messes up the ordering of change events w.r.t. other
signals and events on the bus. Note that not only NMExportedObject
messed up the ordering. Also the generated code would hook into
notify() and process change events in and idle handle, exhibiting the
same ordering issue too.
No longer do that. PropertiesChanged signals will be sent right away
by hooking into dispatch_properties_changed(). This means, changing
a property in quick succession will no longer be combined and is
guaranteed to emit signals for each individual state. Quite possibly
we emit now more PropertiesChanged signals then before.
However, we are now able to group a set of changes by using standard
g_object_freeze_notify()/g_object_thaw_notify(). We probably should
make more use of that.
Also, now that our signals are all handled in the right order, we
might find places where we still emit them in the wrong order. But that
is then due to the order in which our GObjects emit signals, not due
to an ill behavior of the D-Bus glue. Possibly we need to identify
such ordering issues and fix them.
Numbers (for contrib/rpm --without debug on x86_64):
- the patch changes the code size of NetworkManager by
- 2809360 bytes
+ 2537528 bytes (-9.7%)
- Runtime measurements are harder because there is a large variance
during testing. In other words, the numbers are not reproducible.
Currently, the implementation performs no caching of GVariants at all,
but it would be rather simple to add it, if that turns out to be
useful.
Anyway, without strong claim, it seems that the new form tends to
perform slightly better. That would be no surprise.
$ time (for i in {1..1000}; do nmcli >/dev/null || break; echo -n .; done)
- real 1m39.355s
+ real 1m37.432s
$ time (for i in {1..2000}; do busctl call org.freedesktop.NetworkManager /org/freedesktop org.freedesktop.DBus.ObjectManager GetManagedObjects > /dev/null || break; echo -n .; done)
- real 0m26.843s
+ real 0m25.281s
- Regarding RSS size, just looking at the processes in similar
conditions, doesn't give a large difference. On my system they
consume about 19MB RSS. It seems that the new version has a
slightly smaller RSS size.
- 19356 RSS
+ 18660 RSS
2018-02-26 13:51:52 +01:00
|
|
|
}
|